Innovative Katalysatoren: Ein Überblicksbeitrag

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden.

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden. © Dr. Ziliang Chen

Grüner Wasserstoff benötigt hocheffiziente (Elektro-)Katalysatoren. Auch für die chemische Industrie, die Düngemittelproduktion und andere Wirtschaftszweige sind Katalysatoren unerlässlich. Neben den Übergangsmetallen sind inzwischen eine Vielzahl anderer metallischer oder nichtmetallischer Elemente in den Fokus der Forschung gerückt. In einem Übersichtsartikel geben Experten des CatLab am HZB und der Technischen Universität Berlin einen Überblick über den aktuellen Wissensstand und einen Ausblick auf zukünftige Forschungsfragen.

Grüner Wasserstoff ist ein wichtiger Baustein in einem klimaneutralen Energiesystem. Er wird durch elektrolytische Spaltung von Wasser mit Wind- oder Sonnenenergie erzeugt und speichert diese Energie in chemischer Form. Doch derzeit ist die Herstellung von grünem Wasserstoff noch nicht wirtschaftlich und effizient genug. Der Schlüssel zur Lösung dieses Problems liegt in der Entwicklung innovativer Elektrokatalysatoren, die nicht nur mit hohem Wirkungsgrad arbeiten, sondern auch langlebig, verfügbar und kostengünstig sein sollten.

Neben den Übergangsmetallen, deren katalytische Eigenschaften bereits gut erforscht sind, sind nun auch Elemente aus den Gruppen der Alkalimetalle, Erdalkalimetalle, Seltenerdmetalle oder Metalloide in den Fokus der Aufmerksamkeit gerückt. Einige Elemente aus diesen Gruppen könnten in Kombination mit Übergangsmetallen die Leistung von Katalysatoren erheblich verbessern und zur Entwicklung von Hochleistungs-Elektrokatalysatoren der nächsten Generation beitragen. Viele der Prozesse, die während der Elektrokatalyse bei der Bildung von Sauerstoff oder Wasserstoff ablaufen, sind jedoch noch nicht im Detail verstanden.

In einem Übersichtsartikel führt nun ein internationales Expertenteam durch dieses spannende Forschungsgebiet und skizziert die nächsten Schritte, die die Katalysatorforschung nehmen könnte. "Dieser Beitrag fasst den aktuellen Wissensstand über unkonventionelle Materialien  zusammen und macht ihn für eine breitere Wissenschaftsgemeinschaft zugänglich. Darüber hinaus beschreibt er ausführlich die Rolle dieser Metalle bei der Elektrokatalyse, sowie die Modifizierungsstrategie, die man in Betracht ziehen könnte, wenn man Elektrokatalysatoren einsetzen will, die nicht auf Edelmetallen basieren. Wir hoffen, mit diesem Übersichtsartikel die Forschung und Entwicklung an innovativen Katalysatormaterialien erheblich zu beschleunigen", betont Dr. Prashanth W. Menezes.

 

Hinweis: Dr. Prashanth W. Menezes ist Leiter der Gruppe Materialchemie für Dünnschichtkatalyse am HZB im CatLab-Projekt und Leiter der Gruppe Anorganische Materialien an der TU Berlin.

Seine Twitterhandle lautet @EnergycatLab

Zu CatLab: Gemeinsam mit dem Fritz-Haber-Institut der Max-Planck-Gesellschaft baut das HZB das Katalyse-Labor CatLab auf, das die Forschung an innovativen Katalysatoren beschleunigen soll.  CatLab wird vom Bundesministerium für Bildung und Forschung gefördert.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ein Rekordjahr für unser Reallabor für BIPV
    Nachricht
    22.01.2026
    Ein Rekordjahr für unser Reallabor für BIPV
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    Science Highlight
    19.01.2026
    Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    So genannte Ewigkeitschemikalien oder PFAS-Verbindungen sind ein zunehmendes Umweltproblem. Ein innovativer Ansatz für die Aufbereitung von Wasser und Böden in PFAS-belasteten Gebieten kommt jetzt aus der Beschleunigerphysik: Hochenergetische Elektronen können PFAS-Moleküle durch Radiolyse in unschädliche Bestandteile zerlegen. Ein am HZB entwickelter Beschleuniger auf Basis eines SHF-Photoinjektors kann den dafür nötigen Elektronenstrahl liefern, zeigt nun eine Studie in PLOS One.
  • Verdrehte Nanoröhren, die eine Geschichte erzählen
    Nachricht
    09.12.2025
    Verdrehte Nanoröhren, die eine Geschichte erzählen
    In Zusammenarbeit mit deutschen Wissenschaftlern haben EPFL-Forscher gezeigt, dass die spiralförmige Geometrie winziger, verdrillter Magnetröhren genutzt werden kann, um Daten zu übertragen, die nicht auf Elektronen, sondern auf Quasiteilchen, den Magnonen, basieren.