Innovative Katalysatoren: Ein Überblicksbeitrag

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden.

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden. © Dr. Ziliang Chen

Grüner Wasserstoff benötigt hocheffiziente (Elektro-)Katalysatoren. Auch für die chemische Industrie, die Düngemittelproduktion und andere Wirtschaftszweige sind Katalysatoren unerlässlich. Neben den Übergangsmetallen sind inzwischen eine Vielzahl anderer metallischer oder nichtmetallischer Elemente in den Fokus der Forschung gerückt. In einem Übersichtsartikel geben Experten des CatLab am HZB und der Technischen Universität Berlin einen Überblick über den aktuellen Wissensstand und einen Ausblick auf zukünftige Forschungsfragen.

Grüner Wasserstoff ist ein wichtiger Baustein in einem klimaneutralen Energiesystem. Er wird durch elektrolytische Spaltung von Wasser mit Wind- oder Sonnenenergie erzeugt und speichert diese Energie in chemischer Form. Doch derzeit ist die Herstellung von grünem Wasserstoff noch nicht wirtschaftlich und effizient genug. Der Schlüssel zur Lösung dieses Problems liegt in der Entwicklung innovativer Elektrokatalysatoren, die nicht nur mit hohem Wirkungsgrad arbeiten, sondern auch langlebig, verfügbar und kostengünstig sein sollten.

Neben den Übergangsmetallen, deren katalytische Eigenschaften bereits gut erforscht sind, sind nun auch Elemente aus den Gruppen der Alkalimetalle, Erdalkalimetalle, Seltenerdmetalle oder Metalloide in den Fokus der Aufmerksamkeit gerückt. Einige Elemente aus diesen Gruppen könnten in Kombination mit Übergangsmetallen die Leistung von Katalysatoren erheblich verbessern und zur Entwicklung von Hochleistungs-Elektrokatalysatoren der nächsten Generation beitragen. Viele der Prozesse, die während der Elektrokatalyse bei der Bildung von Sauerstoff oder Wasserstoff ablaufen, sind jedoch noch nicht im Detail verstanden.

In einem Übersichtsartikel führt nun ein internationales Expertenteam durch dieses spannende Forschungsgebiet und skizziert die nächsten Schritte, die die Katalysatorforschung nehmen könnte. "Dieser Beitrag fasst den aktuellen Wissensstand über unkonventionelle Materialien  zusammen und macht ihn für eine breitere Wissenschaftsgemeinschaft zugänglich. Darüber hinaus beschreibt er ausführlich die Rolle dieser Metalle bei der Elektrokatalyse, sowie die Modifizierungsstrategie, die man in Betracht ziehen könnte, wenn man Elektrokatalysatoren einsetzen will, die nicht auf Edelmetallen basieren. Wir hoffen, mit diesem Übersichtsartikel die Forschung und Entwicklung an innovativen Katalysatormaterialien erheblich zu beschleunigen", betont Dr. Prashanth W. Menezes.

 

Hinweis: Dr. Prashanth W. Menezes ist Leiter der Gruppe Materialchemie für Dünnschichtkatalyse am HZB im CatLab-Projekt und Leiter der Gruppe Anorganische Materialien an der TU Berlin.

Seine Twitterhandle lautet @EnergycatLab

Zu CatLab: Gemeinsam mit dem Fritz-Haber-Institut der Max-Planck-Gesellschaft baut das HZB das Katalyse-Labor CatLab auf, das die Forschung an innovativen Katalysatoren beschleunigen soll.  CatLab wird vom Bundesministerium für Bildung und Forschung gefördert.

arö

Das könnte Sie auch interessieren

  • Netzwerktag der Allianz für Bauwerkintegrierte Photovoltaik am 14.02.
    Nachricht
    06.02.2023
    Netzwerktag der Allianz für Bauwerkintegrierte Photovoltaik am 14.02.
    Der 2. Netzwerktag der Allianz BIPV findet statt am 14.02.2023 von 10 bis 16 Uhr statt. Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Science Highlight
    27.01.2023
    Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im normalen Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur Vorläuferlösung des Perowskits hinzu, verbessert sich die Stabilität enorm. Dies zeigt nun ein internationales Team unter der Leitung von Antonio Abate, HZB, im Fachjournal Science. Die so hergestellten Solarzellen erreichen Wirkungsgrade von deutlich über 24 Prozent, die selbst bei dramatischen Temperaturschwankungen zwischen -60 und +80 Grad Celsius über hundert Zyklen kaum sinken. Das entspricht etwa einem Jahr im Außeneinsatz.

  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.