Innovative catalysts: An expert review

With the help of innovative elctrocatalytic materials, water can be split up into oxygen and hydrogen. Hydrogen is a fuel storing chemical energy as long as needed.

With the help of innovative elctrocatalytic materials, water can be split up into oxygen and hydrogen. Hydrogen is a fuel storing chemical energy as long as needed. © Dr. Ziliang Chen

Highly efficient (electro-)catalysts are essential for the production of green hydrogen, the chemical industry, fertiliser production and other sectors of the economy. In addition to transition metals, a variety of other metallic or non-metallic elements have now moved into the focus of research. In a review article, experts from CatLab and Technische Universität Berlin present an overview on current knowledge and a perspective on future research questions.

Green hydrogen is an important component in a climate-neutral energy system. It is produced by electrolytically splitting water with wind or solar power and stores this energy in chemical form. But currently, the production of green hydrogen is not yet economical or efficient enough. The key to solving this problem is through the development of innovative electrocatalysts, which should not only work with high efficiencies but should also be available and inexpensive.

In addition to transition metals, which are already well studied for their catalytic properties, a wider choice of elements has now moved into the focus such as alkali metals, alkaline earth metals, rare earth metals, lean metals and metalloids. Some of these when combined with transition metal electrocatalysts can significantly improve performance and contribute to the development of next-generation high-performance electrocatalysts.

However, many of the processes that take place during electrocatalysis -when oxygen or hydrogen is formed - are still not understood in detail. In a review article, an international team of experts guides us through this exciting research field and draws a perspective, sketching the next steps catalyst research could take. “This contribution summarises the current state of knowledge on such unconventional s-, p-, and f-block metal-based materials and makes it comprehensible to a wider community of scientists”, Dr. Prashanth W. Menezes points out and adds: "Further, the essential role of such metals during water splitting electrocatalysis is described in great depth, as well as the modification strategy that should be considered when one wants to utilize them to mediate non-noble-based electrocatalysts. We hope to significantly accelerate research and development of novel, innovative catalyst materials with this review article."

Note: Dr. Prashanth W. Menezes is Head of Materials Chemistry for Thin-Film Catalysis Group in the CatLab-Project at HZB and Head of Inorganic Materials Group at TU Berlin.

His twitterhandle is @EnergycatLab

 

CatLab: Together with the Fritz Haber Institute of the Max Planck Society, HZB is setting up the Catalysis Laboratory CatLab, which is intended to accelerate research into innovative catalysts.  CatLab is supported by the German Federal Ministry of Education and Research.

 

arö

You might also be interested in

  • European pilot line for innovative photovoltaic technology based on tandem solar cells
    News
    23.11.2022
    European pilot line for innovative photovoltaic technology based on tandem solar cells
    PEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.
  • Quantum algorithms save time in the calculation of electron dynamics
    Science Highlight
    22.11.2022
    Quantum algorithms save time in the calculation of electron dynamics
    Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team at HZB has succeeded to calculate the electron orbitals and their dynamic development on the example of a small molecule after a laser pulse excitation. In principle, the method is also suitable for investigating larger molecules that cannot be calculated using conventional methods.
  • How photoelectrodes change in contact with water
    Science Highlight
    17.11.2022
    How photoelectrodes change in contact with water
    Photoelectrodes based on BiVO4 are considered top candidates for solar hydrogen production. But what exactly happens when they come into contact with water molecules? A study in the Journal of the American Chemical Society has now partially answered this crucial question:  Excess electrons from dopants or defects aid the dissociation of water which in turn stabilizes so-called polarons at the surface. This is shown by data from experiments conducted at the Advanced Light Source at Lawrence Berkeley National Laboratory. These insights might foster a knowledge-based design of better photoanodes for green hydrogen production.