Dissertation Prize Adlershof 2021 goes to Amran Al-Ashouri

Congratulations: Amran-Al Ashouri (3rd from right) wins the 2021 Dissertation Award. A total of three nominees gave exciting presentations at the event.

Congratulations: Amran-Al Ashouri (3rd from right) wins the 2021 Dissertation Award. A total of three nominees gave exciting presentations at the event. © IGAFA/Matthias Brandt

The world record cell from HZB. With his research, Amran Al-Ashouri made an important contribution to this success.

The world record cell from HZB. With his research, Amran Al-Ashouri made an important contribution to this success. © Amran Al-Ashouri /HZB

02:15

On February 17, 2022, the Adlershof Dissertation Prize was awarded for the 20th time. Dr. Amran Al-Ashouri (3rd from right) from the HZB young investigator research group "Perovskite tandem solar cells" received the prize endowed with 3,000 euros. The physicist is researching how new organic contact layers can be used to optimize highly efficient perovskite silicon tandem solar cells.

Today's solar modules are mainly made of silicon, and it is no longer possible to significantly increase their efficiency. For some years now, perovskites have therefore become an important focus of research. These semiconductor compounds efficiently convert sunlight into electrical energy. In particular, they can be excellently combined with silicon solar cells to form tandem solar cells that can use sunlight much more efficiently.

In his doctoral thesis, Amran Al-Ashouri developed new organic contact layers for perovskite silicon tandem solar cells and researched the fine-tuning of the electrical interfaces for minimal charge carrier losses. The tandem solar cells realised with several teams at HZB achieved record efficiencies, due to this optimization (see news "World record again at HZB"). Due to their low resource and cost requirements, tandem solar cells represent an important technology that can accelerate the energy transition.

"My PhD thesis is about a novel technology that can boost solar cells. Our goal is that the results in tandem solar cells can be used by industry," Amran Al-Ashouri said at the award ceremony. He said he deliberately chose this research topic. "The technologies for combating the climate crisis are mostly available, however, innovation from research drives the transition and makes their future use more effective." 

The Dissertation Award is jointly sponsored and organized each year by the IGAFA e. V. research network, Humboldt University in Berlin and WISTA Management GmbH. This year there were nine applicants, of which three made it to the final selection. The nominees presented their scientific achievements in a vivid way within 15 minutes.

About Amran Al-Ashouri

Dr. Amran Al-Ashouri studied physics at the University of Duisburg-Essen. From September 2017 to February 2021, he completed his doctorate at HZB and the Technical University of Berlin. Since then, the physicist has been working as a postdoc at Helmholtz-Zentrum Berlin in the young investigator research group "Perovskite tandem solar cells".

(red/sz)

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.