Prognose des Wirkungsgrads von Solarzellen mit Terahertz- und Mikrowellenspektroskopie

Im Femtosekunden-Laserlabor von Dr. Dennis Friedrich (HZB) kann der Ladungstransport in Halbleitern mit Teraherz- und Mikrowellen Spektroskopie untersucht werden. Dafür generieren Laserpulse zuerst Ladungsträger im Material, welche dann proportional zu ihrer Mobilität langwellige Strahlung (Terahertz oder Mikrowellen) absorbieren.

Im Femtosekunden-Laserlabor von Dr. Dennis Friedrich (HZB) kann der Ladungstransport in Halbleitern mit Teraherz- und Mikrowellen Spektroskopie untersucht werden. Dafür generieren Laserpulse zuerst Ladungsträger im Material, welche dann proportional zu ihrer Mobilität langwellige Strahlung (Terahertz oder Mikrowellen) absorbieren. © HZB

Viele unterschiedliche Halbleitermaterialien kommen für Solarzellen in Frage. In den letzten Jahren haben insbesondere die Perowskit-Halbleiter Aufsehen erregt, die sowohl preiswert als auch leicht zu verarbeiten sind und hohe Wirkungsgrade ermöglichen. Nun zeigt eine Studie mit 15 Forschungseinrichtungen, wie sich mit Terahertz- (TRTS) und Mikrowellen-Spektroskopie (TRMC) zuverlässig Mobilität und Lebensdauer der Ladungsträger ermitteln lassen. Aus diesen Messdaten ist es möglich, den potenziellen Wirkungsgrad der Solarzelle vorherzusagen und die Verluste in der fertigen Zelle einzuordnen.  


Zu den wichtigsten Materialeigenschaften eines Halbleiters, der als Solarzelle verwendet werden soll, zählen Mobilität und Lebensdauer von Elektronen und „Löchern“. Beide Größen lassen sich kontaktlos mit Hilfe von spektroskopischen Methoden mit Terahertz- bzw- Mikrowellenstrahlung messen. Allerdings unterscheiden sich die Messdaten aus der Literatur oft um Größenordnungen, so dass es schwierig war, daraus zuverlässige Berechnungen abzuleiten.

Referenzproben gemessen

„Diesen Unterschieden wollten wir auf den Grund gehen“, sagt Dr. Hannes Hempel aus dem HZB-Team um Dr. Thomas Unold. Dafür haben die HZB-Physiker Fachleute aus insgesamt 15 internationalen Laboren eingebunden und gemeinsam mit ihnen typische Fehlerquellen und Probleme der Messungen analysiert. Jedes Labor erhielt Referenzproben mit der auf Stabilität optimierten Perowskit-Halbleiterverbindung (Cs,FA,MA)Pb(I,Br)3). Die Proben wurden von Dr. Martin Stolterfoht an der Universität Potsdam produziert.

Präzise Daten für die Prognose

Ein Ergebnis der gemeinsamen Arbeit ist die deutlich präzisere Ermittlung der Transporteigenschaften mit Terahertz- bzw Mikrowellenspektroskopie „Wir wissen nun, worauf wir im Vorfeld der Messungen achten müssen und kommen so zu deutlich besser übereinstimmenden Werten“, betont Hempel.

Ein weiteres Ergebnis ist, dass sich mit diesen zuverlässigen Messdaten und einer weiter-entwickelten Analyse auch die Kennlinien der Solarzelle präziser berechnen lassen. „Wir glauben, dass diese Analyse für die Photovoltaik-Forschung von großem Interesse ist, weil sie den maximal möglichen Wirkungsgrad des Materials in einer Solarzelle vorhersagt und den Einfluss verschiedener Verlustmechanismen, wie Transportbarrieren, offenlegt“, sagt Unold. Dies gilt nicht nur für die Materialklasse der Perowskit-Halbleiter, sondern auch für andere neue halbleitende Materialien, die sich so rasch auf ihre mögliche Eignung überprüfen lassen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.