Unravelling tautomeric mixtures: RIXS at BESSY II allows to see clearly

The illustration visualises the experimental method, here on the prototypical keto-enol equilibrium. It appears on the cover of “The Journal of Physical Chemistry Letters”.

The illustration visualises the experimental method, here on the prototypical keto-enol equilibrium. It appears on the cover of “The Journal of Physical Chemistry Letters”. © Martin Künsting / HZB

A team at HZB has developed a method of experimentally unravelling tautomeric mixtures. Based on resonant inelastic X-ray scattering (RIXS) at BESSY II, not only proportions of the tautomers can be deduced, but the properties of each individual tautomer can be studied selectively. This method could yield to detailed information on the properties of molecules and their biological function. In the present study, now advertised on the cover of “The Journal of Physical Chemistry Letters” the technique was applied to the prototypical keto-enol equilibrium.

Many (organic) molecules exist as a mixture of two almost identical molecules, with the same molecular formula but one important difference: A single hydrogen atom sits in a different position. The two isomeric forms transform into each other, creating a delicate equilibrium, a "tautomeric" mixture. Many amino acids are tautomeric mixtures, and since they are building blocks of proteins, they may influence their shape and function and thus their biological functions in organisms.

Until now: Mission impossible

Until now, it has been impossible to selectively investigate the electronic structure of such tautomeric mixtures experimentally: Classical spectroscopic methods “see” only the sum of the signals of each molecular forms - the details of the properties of the two individual tautomers cannot be determined.

Now at BESSY II: it works

A team led by HZB physicist Prof. Alexander Föhlisch has now succeeded in providing a method of experimentally unravelling tautomeric mixtures. Using inelastic X-ray scattering (RIXS) and a data processing/evaluation method newly developed at HZB, the individual proportions of the tautomers can be clearly deduced from the measured data. "We can experimentally separate the signal of each individual molecule in the mixture by X-ray scattering, which leads to a detailed insight into their functionality and chemical properties," says Dr. Vinicíus Vaz Da Cruz, first author of the paper and postdoc in Föhlisch's team.

"Specifically, we measure a pure spectrum of each tautomer, taking advantage of the element specificity and site selectivity of the method," Vaz Da Cruz explains. This allowed them to fully characterise the components in the tautomer mixture.

New insights into biological processes

In the present study, the technique was applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. The data were obtained at the EDAX terminal station at BESSY II.

These results provide experimental evidence for concepts that have previously only been discussed theoretically in the literature. They are particularly interesting to enlighten and understand important biological processes such as the interaction between nucleoid bases of the DNA, metabolic conversion of fructose into glucose, or the folding of proteins.

arö

  • Copy link

You might also be interested in

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.
  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.