Tautomere Gemische enträtselt: RIXS an BESSY II liefert klare Aussagen

Das Bild illustriert die experimentelle Methode, mit der hier (als Beispiel) das Keto-Enol-Gleichgewicht untersucht wurde. Die Illustration erscheint auch auf dem aktuellen Cover von “The Journal of Physical Chemistry Letters”.

Das Bild illustriert die experimentelle Methode, mit der hier (als Beispiel) das Keto-Enol-Gleichgewicht untersucht wurde. Die Illustration erscheint auch auf dem aktuellen Cover von “The Journal of Physical Chemistry Letters”. © Martin Künsting / HZB

Ein Team am HZB hat eine Methode entwickelt, um tautomere Gemische zu untersuchen. Mit resonanter inelastischer Röntgenstreuung (RIXS) an BESSY II lassen sich nicht nur die Anteile der jeweiligen Tautomere exakt bestimmen, sondern auch die Eigenschaften jedes Tautomers. Damit liefert die Methode auch detaillierte Informationen über ihre biologische Funktion. In der Studie wurde die Technik auf das Keto-Enol-Gleichgewicht angewendet, das bei vielen biologischen Prozessen eine Rolle spielt. Auf dem Titelblatt weist das "The Journal of Physical Chemistry Letters" auf die Arbeit hin.

Viele (organische) Moleküle liegen als Gemisch zweier fast identischer Moleküle vor, die die gleiche Summenformel haben, sich aber in einem wichtigen Punkt unterscheiden: Ein einzelnes Wasserstoffatom sitzt an einer anderen Position. Die beiden isomeren Formen gehen ineinander über und bilden ein empfindliches Gleichgewicht, ein „tautomeres" Gemisch. Tautomere Gemische spielen in der Biologie eine große Rolle: So sind zum Beispiel viele Aminosäuren tautomere Gemische. Als Bausteine von Proteinen können sie deren Form und Funktion und damit auch ihre biologischen Funktionen in Organismen beeinflussen.

Bisher kaum unterscheidbar

Bislang war es jedoch nicht möglich, die elektronische Struktur solcher tautomeren Gemische gezielt experimentell voneinander zu trennen. Klassische spektroskopische Methoden erfassen nur die Summe der Signale der einzelnen Molekülformen, können aber nicht die Eigenschaften der beiden einzelnen Tautomere im Detail voneinander unterscheiden.

Jetzt an BESSY II: Es klappt

Einem Team um den HZB-Physiker Prof. Alexander Föhlisch ist es nun gelungen, eine Methode bereitzustellen, die genau das ermöglicht: Mit Hilfe der inelastischen Röntgenstreuung (RIXS) und einer eigens dafür entwickelten Methode zur Auswertung der Daten lassen sich die einzelnen Anteile der Tautomere aus den Messdaten eindeutig voneinander unterscheiden.

„Wir können das Signal jedes einzelnen Moleküls in der Mischung experimentell trennen. Dies erlaubt uns einen detaillierten Einblick in ihre Funktionalität und chemischen Eigenschaften", sagt Dr. Vinicíus Vaz Da Cruz, Erstautor der Arbeit und Postdoc in Föhlischs Team. „Wir messen ein reines Spektrum jedes Tautomers und nutzen dabei die Elementspezifität und Ortsselektivität der Methode", erklärt Vaz Da Cruz. Dadurch lassen sich die Komponenten des tautomeren Gemischs vollständig charakterisieren.

Einblicke in biologische Prozesse

In der vorliegenden Studie wurde die Technik auf das prototypische Keto-Enol-Gleichgewicht von 3-Hydroxypyridin in wässriger Lösung angewendet. Die Daten wurden an der EDAX-Terminalstation bei BESSY II gewonnen.

Diese Ergebnisse liefern experimentelle Beweise für Konzepte, die in der Literatur bisher nur theoretisch diskutiert wurden. Sie sind besonders interessant, um wichtige biologische Prozesse wie die Wechselwirkung zwischen Nukleoidbasen der DNA, die metabolische Umwandlung von Fruktose in Glukose oder die Faltung von Proteinen aufzuklären und zu verstehen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Nachricht
    15.10.2025
    Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).