Fermi-Bögen in Antiferromagneten an BESSY II entdeckt

An BESSY II konnte die Fermi-Oberfläche von antiferromagnetischem NdBi gemessen werden. Dabei zeigten sich so genannte Fermi-Bögen.

An BESSY II konnte die Fermi-Oberfläche von antiferromagnetischem NdBi gemessen werden. Dabei zeigten sich so genannte Fermi-Bögen. © https://www.nature.com/articles/s41586-022-04412-x.

Eine internationale Kooperation hat Proben von NdBi-Kristallen untersucht, die interessante magnetische Eigenschaften aufweisen. Bei ihren Experimenten, darunter Messungen an BESSY II, konnten sie Hinweise auf so genannte Fermi-Bögen im antiferromagnetischen Zustand der Probe bei tiefen Temperaturen finden. Diese Beobachtung wird durch bestehende theoretische Vorstellungen noch nicht erklärt und eröffnet faszinierende Möglichkeiten, diese Art von Materialien für innovative Informationstechnologien zu nutzen, die auf Spins statt auf Elektronen basieren.

Neodym-Bismut-Kristalle gehören zur breiten Palette von Materialien mit interessanten magnetischen Eigenschaften. Die Fermi-Fläche, die in den Experimenten gemessen wird, enthält Informationen über die Transporteigenschaften der Ladungsträger im Kristall. Während die Fermi-Fläche normalerweise aus geschlossenen Konturen besteht, sind unzusammenhängende Abschnitte, die als Fermi-Bögen bezeichnet werden, sehr selten und können Anzeichen für ungewöhnliche elektronische Zustände sein.

Ungewöhnliche Aufspaltung

In einer Studie, die jetzt in Nature veröffentlicht wurde, präsentiert das Team experimentelle Beweise für solche Fermi-Bögen. Sie beobachteten eine ungewöhnliche magnetische Aufspaltung im antiferromagnetischen Zustand der Proben unterhalb einer Temperatur von 24 Kelvin (der Néel-Temperatur). Diese Aufspaltung erzeugt Bänder mit entgegengesetzter Krümmung, die sich mit der Temperatur zusammen mit der antiferromagnetischen Ordnung ändern.

Diese Beobachtung ist sehr wichtig, weil sie sich von den bisher theoretisch betrachteten und experimentell beobachteten Fällen magnetischer Aufspaltungen fundamental unterscheidet. Bei den bisher bekannten Zeeman- und Rashba-Aufspaltungen bleibt die Krümmung der Bänder immer erhalten. Da beide genannten Effekte für die Spintronik wichtig sind, könnten die aktuellen Erkenntnisse zu neuen Anwendungen führen, zumal sich das Augenmerk bei der Spintronikforschung derzeit von traditionell ferromagnetischen hin zu antiferromagnetischen Materialien bewegt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.