Jan Lüning leitet HZB-Institut für Elektronische Struktur Dynamik
Das zum 1. Mai neu gegründete HZB-Institut für Elektronische Struktur Dynamik entwickelt experimentelle Techniken und Infrastrukturen, um die Dynamik elementarer mikroskopischer Prozesse in neuartigen Materialsystemen zu untersuchen. Auf Basis dieser Erkenntnisse lassen sich funktionale Materialien mit besonderen Eigenschaften für nachhaltige Technologien gezielt optimieren.
Prof. Dr. Jan Lüning ist ein international anerkannter Experte für die Forschung mit Synchrotronstrahlung. Vor seinem Wechsel an das HZB in 2018 war er Professor an der Sorbonne Universität in Paris und arbeitete am französischen Synchrotron SOLEIL.
Zum Institut gehören drei Fachgruppen: Die Gruppe um Dr. Ulrich Schade betreibt das Infrarot-Strahlrohr IRIS an der Synchrotronstrahlungsquelle BESSY II und erforscht molekulare Prozesse in neuartigen funktionalen Materialien, die zum Beispiel die Umwandlung von Energie oder die katalytische Wasserspaltung ermöglichen.
Die Gruppe „Ultra-Kurzzeit Laser-Spektroskopie“ (Leitung Dr. Iain Wilkinson) arbeitet in den Laserlaboren ULLAS und LIDUX und untersucht die Dynamik von Reaktionen in wässrigen Lösungen und an wässrigen Grenzflächen auf ultra-kurzen Zeitskalen.
Die dritte Gruppe um Dr. Christian Schüssler-Langeheine und Dr. Niko Pontius betreibt die Femtoslicing-Facility an BESSY II und forscht an Materialien mit komplexen Phasenübergängen, die das Potential haben, elektronische und magnetische Bauteile kleiner, schneller und energieeffizienter zu machen.
Die Forschungsaktivitäten des Instituts sind in der Programmorientierten Förderung (POF IV) der Helmholtz-Gemeinschaft im Forschungsbereich Materie angesiedelt.
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23708;sprache=de
- Link kopieren
-
Faszinierendes Fundstück wird zu wertvoller Wissensquelle
Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
-
Topologische Überraschungen beim Element Kobalt
Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
-
MXene als Energiespeicher: Vielseitiger als gedacht
MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.