Jan Lüning heads HZB Institute for Electronic Structure Dynamics

© HG Medien

The HZB Institute for Electronic Structure Dynamics, newly founded on 1 May, develops experimental techniques and infrastructures to investigate the dynamics of elementary microscopic processes in novel material systems. This will help to optimise functional materials for sustainable technologies.

Prof. Dr. Jan Lüning is an internationally recognised expert in research with synchrotron radiation. Before joining HZB in 2018, he was a professor at Sorbonne University in Paris and worked at the French synchrotron SOLEIL.

Three groups belong to the institute: Dr Ulrich Schade's group operates the IRIS infrared beamline at the BESSY II synchrotron radiation source. He examines molecular processes in novel functional materials that enable, for example, energy conversion or catalytic water splitting.

The group "Ultra-Short-Time Laser Spectroscopy" led by Dr. Iain Wilkinson works in the laser laboratories ULLAS and LIDUX and investigates the dynamics of reactions in aqueous solutions and at aqueous interfaces on ultra-short time scales.

The third group, led by Dr. Christian Schüssler-Langeheine and Dr. Niko Pontius, operates the Femtoslicing Facility at BESSY II and conducts research on materials with complex phase transitions that have the potential to make electronic and magnetic devices smaller, faster and more energy efficient.

The institute's research activities are part of the Helmholtz Association's Programme-Oriented Funding (POF IV) in the Research Field Matter.

red.

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.