Shutdown at BESSY II: new supply technology ensures long-term operation

During the shutdown, the low voltage main distribution panel will be completely renewed (here in the picture: before the conversion).

During the shutdown, the low voltage main distribution panel will be completely renewed (here in the picture: before the conversion). © HZB/A. Knoch

The conversion work is in full swing: the old components are being dismantled and replaced.

The conversion work is in full swing: the old components are being dismantled and replaced. © HZB/A. Knoch

The X-ray source BESSY II is in a three-month period of shutdown. During this period, the low voltage main distribution panel in the supply building outside the electron storage ring is being renovated. This will secure the long-term operation of BESSY II over the next decade.

“The feeder cubicles for the power supply of the BESSY II machine are key to its reliable operation,” relates the responsible project manager Andreas Knoch from Technical Services (FM-T). The equipment section of the low voltage main distribution board comprises 36 control panels. They provide electricity to important components for operating the accelerator facility. These include, among other things, power supply units, magnets, high frequency systems, vacuum systems, climate control, osmosis water systems and IT systems.

“We need to replace the respective switchgear one-to-one, since there are no substitutes for the important components due to their age. The control cabinets will be equipped with components similar to the existing ones, except with adapted elements and additionally universal meters, active arc protection and new data bus technology in all outputs,” Knoch adds. Furthermore, new chillers will be installed during the shutdown. These will ensure the climate control in the electron storage ring runs reliably.

The interrelated work during the shutdown is being coordinated by Ingo Müller together with Christian Jung. The three months of “darkness” will therefore be used for other tasks as well: among others, for example, construction is continuing for the new experimental stations of the “BElChem” lab. In this joint project, the Max Planck Society and HZB are setting up new experimental capabilities at BESSY II for analysing material systems for electrochemical and catalytic applications. This work will continue even after the summer shutdown has ended.

Even if the shutdown were to continue into August, the interruption is the best alternative in which the least amount of measurement time is lost. “After all, all of our measures are aimed at one thing: that BESSY II will be available to our users stably and without unplanned interruptions,” says Christian Jung.

BESSY II will be started up again from 8 August 2022. Three weeks after that, on 30 August, HZB will once again be welcoming its users to the BESSY II beamlines.

 

(sz)

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.