Environmental impact of perovskite-on-silicon solar PV modules lower than silicon alone

Oxford PV provided the perovskite-on-silicon module and process data for the study from its volume manufacturing line in Germany.

Oxford PV provided the perovskite-on-silicon module and process data for the study from its volume manufacturing line in Germany. © Oxford PV

Solar photovoltaics is a reliable and sustainable way to generate energy. A study has evaluated for the first time the lifecycle environmental impact of industrially produced perovskite-on-silicon tandem solar modules, provided by Oxford PV. The conclusion: these innovative tandem solar modules are even more environmentally friendly than conventional silicon heterojunction modules over their lifetimes. The study has now been published by the peer reviewed journal Sustainable Energy & Fuels.

Solar photovoltaics (PV) has a crucial role in decarbonising homes, businesses, and industries. It is increasingly being adopted as a cost-effective, reliable and sustainable energy generation solution. Global installed solar PV capacity has risen from 2 GW in 2002 to more than 1 TW (1000 GW) in 2022, and it is expected to continue to increase substantially over the next decades as countries aim to meet their climate goals and energy security needs.

Perovskite-on-silicon solar cell technology generates more electricity than standard silicon technology and holds significant promise to accelerate solar deployment around the world. The technology is based on a tandem system where a perovskite cell is deposited on top of a silicon cell, maximising the power generated from the combined cell. This tandem technology has broken world records for solar conversion efficiency, which now has reached above 31%.

Understanding the environmental impact of solar PV modules across their entire lifecycle is essential for the design of more sustainable solar energy systems. However, lifecycle assessment on perovskite-on-silicon PV modules have so far relied heavily on data from laboratory and test facilities rather than manufacturers. Now, in a paper published in Sustainable Energy & Fuels, for the first time researchers have assessed the environmental performance of industrially produced perovskite-on-silicon PV modules.

“We have found that perovskite-on-silicon PV modules are more environmentally advantageous than conventional silicon heterojunction modules over a 25-year lifetime,” says Bernd Stannowski from Helmholtz-Zentrum Berlin, a co-author of the study.

The researchers conducted a comprehensive lifecycle assessment of a perovskite-on-silicon module across a number of categories including global warming potential, water consumption, human and marine toxicity, and metals usage. They assessed the materials and energy input for a module’s ‘cradle to gate’ lifecycle, covering all materials and energy input for wafer production, manufacture of the perovskite cell, and module production.

The researchers then weighed up the environmental impact of the tandem module against the electricity generated over its lifetime.

“We found that the perovskite-on-silicon module has 6% to 18% less environmental impact than a silicon module, when we consider the additional energy generated over the tandem module’s 25-year lifetime,” says Martin Roffeis, co-author from The Technical University of Berlin.

The tandem module used in the study would generate the same amount of electricity in 22 years as the referenced silicon heterojunction module over 25 years.

“The higher power conversion efficiency of the perovskite-on-silicon tandem module compensates for its environmental impact due to the additional perovskite material and processes,” notes Jan-Christoph Goldschmidt, co-author who carried out the study while at the Fraunhofer Institute for Solar Energy Systems, and who is now at The Philipps University of Marburg.

The study also finds that the environmental performance of a perovskite-on-silicon module is largely influenced by energy consumed during the production of silicon wafers.

Oxford PV provided the perovskite-on-silicon module and process data for the study from its volume manufacturing line in Germany.

“The sustainability of solar materials and supply chains is growing in importance as the world deploys solar at the multi-terawatt level,” says Laura Miranda Pérez, Head of Materials Research at Oxford PV. “We hope our contribution will help industry and the wider scientific community to improve the design, production, and end-of-life management of tandem technologies, supporting their rollout.”

OxfordPV / red.

  • Copy link

You might also be interested in

  • Tage des offenen Reallabors - Das HZB lädt ein!
    Nachricht
    11.06.2025
    Tage des offenen Reallabors - Das HZB lädt ein!
    Photovoltaik trifft Architektur.
  • AI in Chemistry: Study Highlights Strengths and Weaknesses
    News
    04.06.2025
    AI in Chemistry: Study Highlights Strengths and Weaknesses
    How well does artificial intelligence perform compared to human experts? A research team at HIPOLE Jena set out to answer this question in the field of chemistry. Using a newly developed evaluation method called “ChemBench,” the researchers compared the performance of modern language models such as GPT-4 with that of experienced chemists. 

  • TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    News
    30.05.2025
    TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    On 21 May 2025, the Technical University of Applied Sciences Wildau (TH Wildau) and the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), signed a comprehensive cooperation agreement. The aim is to further promote networking and cooperation, particularly in basic research, to increase the scientific excellence of both partners and to develop competence networks in research, teaching and the training of young scientists.