Feinstpartikel zurück in den Rohstoffkreislauf

<p class="figTitle">Innerhalb von drei Teilprojekten werden organische, metallische und Feinststoffarten untersucht, die zu Zement recycelt werden k&ouml;nnten.

Innerhalb von drei Teilprojekten werden organische, metallische und Feinststoffarten untersucht, die zu Zement recycelt werden könnten. © FINEST

Bei industriellen Prozessen entstehen immer auch feinkörnige Rückstände. Diese finden nur selten den Weg zurück in die industrielle Wertschöpfungskette, sondern werden meist entsorgt und stellen ein potenzielles Umweltrisiko dar. Das Projekt FINEST erfasst und untersucht verschiedene dieser Feinststoffströme mit dem Ziel, neue Konzepte zu entwickeln, um sie im Kreislauf zu halten und verbliebene Reststoffe gefahrlos abzulagern. FINEST konnte sich beim Nachhaltigkeitswettbewerb der Helmholtz-Gemeinschaft durchsetzen und wird nun 5 Millionen Euro gefördert.

 

Das Projekt wird vom Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) koordiniert und bezieht Teams am Helmholtz-Zentrum Berlin (HZB), dem Karlsruher Institut für Technologie (KIT), dem Helmholtz-Zentrum für Umweltforschung (UFZ), der TU Bergakademie Freiberg (TUBAF) und der Universität Greifswald mit ein.

Das HZB beteiligt sich an FINEST in einem Projekt zum Abbau von Mikroplastik. „Wir wollen gemeinsam mit dem UFZ untersuchen, wie sich Mikroplastik-Partikel abbauen lassen, etwa durch bakterielle Enzyme, die wir struktur-basiert verbessern. Zusätzlich wollen wir auch zusammen mit dem HZDR neue Detektionsmöglichkeiten für Mikro- und Nanoplastik entwickeln“, sagt Dr. Gert Weber, der am HZB in der Gruppe Makromolekulare Kristallographie forscht.

Die Forscher*innen der sechs beteiligten Institutionen beschäftigen sich ab Juli 2022 in dem fünfjährigen Projekt mit Feinststoffen anthropogenen Ursprungs wie Mikroplastik, mineralischen Additiven (Zusatzstoffen) oder Metallen, für die es bislang kaum Verwertungsmöglichkeiten gibt. Mittels innovativer Prozesse sollen die derzeit noch sehr niedrigen Verwertungsquoten dieser feinstpartikulären Stoffe erhöht und die verbleibenden Reststoffe unschädlich abgelagert werden, um eine nachhaltige Kreislaufwirtschaft voranzubringen.

Die vollständige Presseinfo lesen Sie auf der Webseite des HZDR.

 

HZDR/HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern. 

  • TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Nachricht
    30.05.2025
    TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Am 21. Mai 2025 unterzeichneten die Technische Hochschule Wildau (TH Wildau) und das Helmholtz-Zentrum Berlin einen umfassenden Kooperationsvertrag. Ziel ist es, die Vernetzung und Zusammenarbeit insbesondere in der Grundlagenforschung weiter zu fördern, die wissenschaftliche Exzellenz beider Partner zu steigern und Kompetenznetzwerke in Forschung, Lehre sowie der Ausbildung des wissenschaftlichen Nachwuchses zu entwickeln.

  • Grüner Wasserstoff: MXene steigert die Wirkung von Katalysatoren
    Science Highlight
    29.05.2025
    Grüner Wasserstoff: MXene steigert die Wirkung von Katalysatoren
    An den enorm großen inneren Oberflächen von MXenen können sich katalytisch aktive Partikel anheften. Mit diesem raffinierten Trick lässt sich ein preiswerter und viel effizienterer Katalysator für die Sauerstoffentwicklungsreaktion realisieren, die bei der Erzeugung von grünem Wasserstoff bislang als Engpass gilt. Dies hat eine internationale Forschergruppe um die HZB-Chemikerin Michelle Browne nun in einer aufwendigen Untersuchung nachgewiesen. Die Studie ist in Advanced Functional Materials veröffentlicht.