Humboldt Fellow Alexander Gray comes to HZB

Alexander Gray (here in his lab at Temple University, Philadelphia, USA) will strengthen his collaboration with the team of Florian Kronast at BESSY II.

Alexander Gray (here in his lab at Temple University, Philadelphia, USA) will strengthen his collaboration with the team of Florian Kronast at BESSY II. © Privat

Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.

 

Topological insulators and Weyl semimetals are among the most exciting classes of materials for quantum devices. They are characterised by the fact that they have different electronic and magnetic  properties at the surfaces and interfaces than in the volume.

Alexander Gray is a well-known expert in this field and frequently comes to BESSY II for short measurement periods, where he cooperates with Florian Kronast. As a Fellow of the Alexander von Humboldt Foundation, the American physicist can now finance regular guest stays at HZB with Florian Kronast's team and at Forschungszentrum Jülich with Claus Schneider's team. "The Humboldt Fellowship gives us more time, so we can investigate and discuss in more detail how the interplay between surface, interface and bulk properties in quantum materials leads to novel phenomena that enable device applications," he says.  

Gray leads a team at Temple University in Philadelphia and also plans to send his students to BESSY II. "We want to develop new techniques to study the electronic and magnetic properties of 2D quantum materials and quantum devices in more detail," he outlines his goals. At BESSY II, Gray will primarily develop depth-resolved standing-wave photoemission microscopy further for this purpose. Kronast, Gray, and his former doctoral advisor Chuck Fadley have already combined this method with excitation by standing X-ray waves to enable depth resolution (SW-PEEM).

From mid-August, Alexander Gray is planning his first stay at BESSY II. He is not only looking forward to the measurements and many discussions, but also to the typical Berlin atmosphere: "The people are really open and friendly, and I have never experienced the famous "Berlin snout". I think if I do one day, I might deserve it." With this attitude, full of humor, his stay in Berlin will be a huge success in every aspect.

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.