BESSY II: Localisation of d-electrons determined

At BESSY II, Auger photoelectron coincidence spectroscopy (APECS) can be used to precisely determine the localisation of d electrons in cobalt compared to nickel and copper.

At BESSY II, Auger photoelectron coincidence spectroscopy (APECS) can be used to precisely determine the localisation of d electrons in cobalt compared to nickel and copper. © adobestock

Transition metals have many applications in engineering, electrochemistry and catalysis. To understand their properties, the interplay between atomic localisation and delocalisation of the outer electrons in the d orbitals is crucial. This insight is now provided by a special end station at BESSY II with highest precision, as demonstrated by a study of copper, nickel and cobalt with interesting quantitative results. The Royal Society of Chemistry has selected the paper as a HOT Article 2022.

Transition metals and non-ferrous metals such as copper, nickel and cobalt are not only suitable as materials in engineering and technology, but also for a wide range of applications in electrochemistry and catalysis. Their chemical and physical properties are related to the occupation of the outer d-orbital shells around the atomic nuclei. The energetic levels of the electrons as well as their localisation or delocalisation can be studied at the X-ray source BESSY II, which offers powerful synchrotron radiation.

Copper, Nickel, Cobalt

The team of the Uppsala-Berlin Joint Lab (UBjL) around Prof. Alexander Föhlisch and Prof. Nils Mårtensson has now published new results on copper, nickel and cobalt samples. They confirmed known findings for copper, whose d-electrons are atomically localised, and for nickel, in which localised electrons coexist with delocalised electrons. In the case of the element cobalt, which is used for batteries and as an alloy in fuel cells, however, previous findings were contradictory because the measurement accuracy was not sufficient to make clear statements.

Spectroscopy combined with highly sensitive detectors

At BESSY II the Uppsala-Berlin joint Lab has set up an instrument which enables measurements with the necessary precision. To determine electronic localisation or delocalisation, Auger photo-electron coincidence spectroscopy (APECS) is used. APECS requires the newly developed "Angle resolved Time of Flight" (ArTOF) electron spectrometers, whose detection efficiency exceeds that of standard hemispherical analysers by orders of magnitude. Equipped with two ArTOF electron spectrometers, the CoESCA@UE52-PGM end station supervised by UBjL scientist Dr. Danilo Kühn is unique worldwide.

Analysing (catalytical) materials

In the case of the element cobalt, the measurements now revealed that the d-electrons of cobalt can be regarded as highly delocalised. "This is an important step for a quantitative determination of electronic localisation on a variety of materials, catalysts and (electro)chemical processes," Föhlisch points out.

Guest users are welcome

The Royal Society of Chemistry has therefore selected the paper as a HOT Article 2022, also because this measurement method might arouse broad interest in the broader research community. The end station is also available to international users at BESSY II, who can apply for beamtime twice a year.

arö

  • Copy link

You might also be interested in

  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.