Neu am HZB: Tomographie-Labor für die KI-unterstützte Batterieforschung

Röntgen-Tomographie einer Batterie-Kathode, virtuell in ihre Bestandteile zerlegt.

Röntgen-Tomographie einer Batterie-Kathode, virtuell in ihre Bestandteile zerlegt. © M. Osenberg, I. Manke/ HZB / Binder/ KIT

Am HZB wird ein Labor für automatisierte Röntgen-Tomographie an Festkörper-Batterien eingerichtet. Das Besondere: 3D-Daten während der Lade/Entladeprozesse (operando) können mit Methoden der Künstlichen Intelligenz (KI) rascher und vielseitiger ausgewertet werden. Das Bundesministerium für Forschung und Bildung fördert das Projekt „TomoFestBattLab“ mit 1,86 Millionen Euro.

 

Röntgen-Tomographie ermöglicht es, direkt in eine Batterie hineinzuschauen und ihr während des Entladens und Beladens zuzuschauen. „Wenn etwa das Lithium beim Laden und Entladen zwischen Anode und Kathode hin und her wandert, dehnt sich möglicherweise das Lithium-Speichermaterial aus oder es finden chemische Umwandlungsprozesse statt“, erläutert der Tomographieexperte Dr. Ingo Manke. Die dreidimensionale Abbildung dieser strukturellen Veränderungen kann Schwachstellen hinsichtlich Leistung und Haltbarkeit deutlich machen, zum Beispiel Alterungsprozesse. Die Röntgen-Tomographie kann diese Strukturveränderungen abbilden und ist daher auch in der Batterieforschung - ähnlich wie in der Medizin - zu einer unverzichtbaren Messtechnik geworden.

Das HZB baut nun ein automatisiertes Tomographie-Labor auf, das speziell auf die Bedürfnisse von so genannten Festkörperbatterien ausgerichtet ist. Die Auswertung tomographischer Messungen ist äußerst zeitaufwändig, da die erzeugten Datenmengen sehr groß sind und komplexe 3D-Algorithmen erfordern. Daher sollen große Teile der 3D-Auswertungen mit Hilfe von Verfahren der künstlichen Intelligenz (bzw. des maschinellen Lernens) vollautomatisiert werden. Unterstützt wird dies durch einen speziellen Hochleistungs-Computer, mit dem so genannte „digitale Zwillinge“ der realen Batterien im Computer erzeugt werden können.

Diese Kombination aus Methoden der künstlichen Intelligenz und Tomographie-Messverfahren ist ein innovativer Ansatz mit Pilotfunktion für die Ausstattung zukünftiger Labore. „Das Projekt hilft uns dabei, die Batterieforschung im Hinblick auf die Erfordernisse der Industrie 4.0 zu digitalisieren und neue Wege bei der Entwicklung von Batterien einzuschlagen“, sagt Projektkoordinator Manke.

Das neue Labor wird Arbeitsgruppen an universitären und außeruniversitären Forschungseinrichtungen sowie Industrieunternehmen darin unterstützen, neue Batterietechnologien zu entwickeln und zu verbessern.  

Laufzeit bis Herbst 2024

Das Projekt „Machine Learning unterstütztes automatisiertes Labor für multi-dimensionale Operando Tomographie von Festkörperbatterien unter realen Betriebsbedingungen“ (TomoFestBattLab, FKZ 03XP0462) wird durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Initiative zum Ausbau der nationalen Forschungsinfrastruktur im Bereich der Batteriematerialien und -technologien (ForBatt) gefördert. Die Förderung läuft vom 01.09.2022 bis 31.08.2024.

 

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.