Neu am HZB: Tomographie-Labor für die KI-unterstützte Batterieforschung

Röntgen-Tomographie einer Batterie-Kathode, virtuell in ihre Bestandteile zerlegt.

Röntgen-Tomographie einer Batterie-Kathode, virtuell in ihre Bestandteile zerlegt. © M. Osenberg, I. Manke/ HZB / Binder/ KIT

Am HZB wird ein Labor für automatisierte Röntgen-Tomographie an Festkörper-Batterien eingerichtet. Das Besondere: 3D-Daten während der Lade/Entladeprozesse (operando) können mit Methoden der Künstlichen Intelligenz (KI) rascher und vielseitiger ausgewertet werden. Das Bundesministerium für Forschung und Bildung fördert das Projekt „TomoFestBattLab“ mit 1,86 Millionen Euro.

 

Röntgen-Tomographie ermöglicht es, direkt in eine Batterie hineinzuschauen und ihr während des Entladens und Beladens zuzuschauen. „Wenn etwa das Lithium beim Laden und Entladen zwischen Anode und Kathode hin und her wandert, dehnt sich möglicherweise das Lithium-Speichermaterial aus oder es finden chemische Umwandlungsprozesse statt“, erläutert der Tomographieexperte Dr. Ingo Manke. Die dreidimensionale Abbildung dieser strukturellen Veränderungen kann Schwachstellen hinsichtlich Leistung und Haltbarkeit deutlich machen, zum Beispiel Alterungsprozesse. Die Röntgen-Tomographie kann diese Strukturveränderungen abbilden und ist daher auch in der Batterieforschung - ähnlich wie in der Medizin - zu einer unverzichtbaren Messtechnik geworden.

Das HZB baut nun ein automatisiertes Tomographie-Labor auf, das speziell auf die Bedürfnisse von so genannten Festkörperbatterien ausgerichtet ist. Die Auswertung tomographischer Messungen ist äußerst zeitaufwändig, da die erzeugten Datenmengen sehr groß sind und komplexe 3D-Algorithmen erfordern. Daher sollen große Teile der 3D-Auswertungen mit Hilfe von Verfahren der künstlichen Intelligenz (bzw. des maschinellen Lernens) vollautomatisiert werden. Unterstützt wird dies durch einen speziellen Hochleistungs-Computer, mit dem so genannte „digitale Zwillinge“ der realen Batterien im Computer erzeugt werden können.

Diese Kombination aus Methoden der künstlichen Intelligenz und Tomographie-Messverfahren ist ein innovativer Ansatz mit Pilotfunktion für die Ausstattung zukünftiger Labore. „Das Projekt hilft uns dabei, die Batterieforschung im Hinblick auf die Erfordernisse der Industrie 4.0 zu digitalisieren und neue Wege bei der Entwicklung von Batterien einzuschlagen“, sagt Projektkoordinator Manke.

Das neue Labor wird Arbeitsgruppen an universitären und außeruniversitären Forschungseinrichtungen sowie Industrieunternehmen darin unterstützen, neue Batterietechnologien zu entwickeln und zu verbessern.  

Laufzeit bis Herbst 2024

Das Projekt „Machine Learning unterstütztes automatisiertes Labor für multi-dimensionale Operando Tomographie von Festkörperbatterien unter realen Betriebsbedingungen“ (TomoFestBattLab, FKZ 03XP0462) wird durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Initiative zum Ausbau der nationalen Forschungsinfrastruktur im Bereich der Batteriematerialien und -technologien (ForBatt) gefördert. Die Förderung läuft vom 01.09.2022 bis 31.08.2024.

 

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.