BESSY II: Influence of protons on water molecules

The spectral fingerprints of water molecules could be studied at BESSY II. The result: the electronic structure of the three innermost water molecules in an H<sub>7</sub>O<sub>3</sub><sup>+</sup> complex is drastically changed by the proton. In addition, the first hydrate shell of five other water molecules around this inner complex also changes, which the proton perceives via its long-range electric field.

The spectral fingerprints of water molecules could be studied at BESSY II. The result: the electronic structure of the three innermost water molecules in an H7O3+ complex is drastically changed by the proton. In addition, the first hydrate shell of five other water molecules around this inner complex also changes, which the proton perceives via its long-range electric field. © MBI

How hydrogen ions or protons interact with their aqueous environment has great practical relevance, whether in fuel cell technology or in the life sciences. Now, a large international consortium at the X-ray source BESSY II has investigated this question experimentally in detail and discovered new phenomena. For example, the presence of a proton changes the electronic structure of the three innermost water molecules, but also has an effect via a long-range field on a hydrate shell of five other water molecules.

Excess protons in water are complex quantum objects with strong interactions with the dynamic hydrogen bond network of the liquid. These interactions are surprisingly difficult to study. Yet so-called proton hydration plays a central role in energy transport in hydrogen fuel cells and in signal transduction in transmembrane proteins. While the geometries and stoichiometries have been extensively studied both in experiments and in theory, the electronic structure of these specific hydrated proton complexes remains a mystery.

A large collaboration of groups from the Max Born Institute, the University of Hamburg, Stockholm University, Ben Gurion University and Uppsala University has now gained new insights into the electronic structure of hydrated proton complexes in solution.

Using the novel flatjet technology, they performed X-ray spectroscopic measurements at BESSY II and combined them with infrared spectral analysis and calculations. This allowed them to distinguish between two main effects: Local orbital interactions determine the covalent bond between the proton and neighbouring water molecules, while orbital energy shifts measure the strength of the proton's extended electric field.

The results suggest a general hierarchy for proton hydration: the proton interacts with three water molecules and forms an H7O3+ complex. The hydrate shell of this complex is influenced by the electric field of the positive charge of the proton.

The new research findings have direct implications for understanding proton hydration from protons in aqueous solution to proton complexes in fuel cells to water structure hydration pockets of proton channels in transmembrane proteins.

Full text of the MBI-Press release >

MBI/arö

  • Copy link

You might also be interested in

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.