Wie sich Photoelektroden im Kontakt mit Wasser verändern

An der Wismut-Vanadat-Oberfläche lagern sich Wassermoleküle an, die dann aufgespalten werden können. Die überschüssigen Elektronen lokalisieren sich als Polaronen an Vanadium-Stellen (gelbe und blaue Wolken).

An der Wismut-Vanadat-Oberfläche lagern sich Wassermoleküle an, die dann aufgespalten werden können. Die überschüssigen Elektronen lokalisieren sich als Polaronen an Vanadium-Stellen (gelbe und blaue Wolken). © HZB / J. Am. Chem. Soc. 2022

Die Valenzbandzust&auml;nde (x-Achse in eV) in Mo-dotiertem BiVO<sub>4</sub> als Funktion der Photonenenergie (y-Achse). Die Pr&auml;senz von kleiner Polaronen l&auml;sst sich aus dem schwach gr&uuml;nen Punkt bei ca. 2 eV ableiten.

Die Valenzbandzustände (x-Achse in eV) in Mo-dotiertem BiVO4 als Funktion der Photonenenergie (y-Achse). Die Präsenz von kleiner Polaronen lässt sich aus dem schwach grünen Punkt bei ca. 2 eV ableiten. © HZB / J. Am. Chem. Soc. 2022

Photoelektroden auf der Basis von BiVO4 gelten als Top-Kandidaten für die solare Wasserstofferzeugung. Doch was passiert eigentlich, wenn sie mit Wassermolekülen in Kontakt kommen? Eine Studie im Journal of the American Chemical Society hat diese entscheidende Frage nun teilweise beantwortet: Überschüssige Elektronen aus dotierten Fremdelementen oder Defekten fördern die Dissoziation von Wasser, was wiederum sogenannte Polaronen an der Oberfläche stabilisiert. Dies zeigen Daten aus Experimenten eines HZB-Teams an der Advanced Light Source des Lawrence Berkeley National Laboratory. Die Ergebnisse könnten dazu beitragen, bessere Photoanoden für die grüne Wasserstoffproduktion zu entwickeln.

 

Jedes grüne Blatt ist in der Lage, Sonnenenergie in chemische Energie umzuwandeln und diese in chemischen Verbindungen zu speichern. Ein wichtiger Teilprozess der Photosynthese kann jedoch bereits technisch nachgeahmt werden - die solare Wasserstoffproduktion: Das Sonnenlicht erzeugt in einer Photoelektrode einen Strom, der zur Spaltung von Wassermolekülen genutzt werden kann. Dabei entsteht Wasserstoff, ein vielseitiger Brennstoff: Wasserstoff speichert die Sonnenenergie in chemischer Form und kann diese Energie bei Bedarf wieder abgeben.

Photoelektroden als Multitalente

Am HZB-Institut für Solare Brennstoffe arbeiten mehrere Arbeitsgruppen an Photoelektroden aus Halbleitermaterialien. Das Besondere: Diese Materialien bleiben auch in wässrigen Lösungen stabil, sie wandeln Sonnenlicht in elektrischen Strom um und wirken gleichzeitig als Katalysatoren und beschleunigen die Aufspaltung von Wasser. Zu den besten Kandidaten für kostengünstige und effiziente Photoelektroden zählt Bismutvanadat (BiVO4).

Was ändert sich im Kontakt mit Wasser?

"Grundsätzlich wissen wir, dass sich die chemische Zusammensetzung der Oberfläche ändert, wenn man Bismutvanadat in eine wässrige Lösung eintaucht“, sagt Dr. David Starr. Und Dr. Marco Favaro fügt an: „Obwohl es sehr viele Studien zu BiVO4 gibt, war bisher nicht klar, welche Auswirkungen dies auf die elektronischen Eigenschaften der Oberfläche hat, sobald sie mit den Wassermolekülen in Kontakt kommen." Dieser Frage sind sie nun nachgegangen.

Dotierte Einkristalle in Wasserdampf

Sie untersuchten Einkristalle von mit Molybdän dotiertem BiVO4 unter Wasserdampf mit resonanter Photoemissionsspektroskopie an der Advanced Light Source am Lawrence Berkeley National Laboratory. Ein Team um Giulia Galli von der University of Chicago führte anschließend Dichtefunktionaltheorieberechnungen durch, um die  Beiträge von einzelnen Elemente und Elektronenorbitalen zu den elektronischen Zuständen voneinander zu trennen.

Polaronen an Oberflächen

"Durch die In-situ-Resonanz-Photoemission konnten wir verstehen, wie sich die elektronischen Eigenschaften unserer BiVO4-Kristalle durch die Wasseradsorption verändert haben", sagt Favaro. Die Kombination von Messungen und Berechnungen zeigte, dass sich aufgrund von überschüssiger Ladung, die entweder durch Dotierung oder Defekte auf bestimmten Oberflächen des Kristalls entsteht, so genannte Polaronen bilden: elektrisch negativ geladene, lokalisierte Zustände, an die sich Wassermoleküle leicht anlagern und dann dissoziieren können. Dadurch bilden sich Hydroxylgruppen, die dazu beitragen, weitere Polaronen zu stabilisieren. "Die überschüssigen Elektronen werden als Polaronen an VO4-Einheiten auf der Oberfläche lokalisiert", fasst Starr die Ergebnisse zusammen.

Photoanoden optimieren

"Was wir noch nicht sicher beurteilen können, ist, welche Rolle die Polaronen beim Ladungstransfer spielen. Ob sie diesen fördern und damit die Effizienz erhöhen oder im Gegenteil ein Hindernis darstellen, müssen wir noch herausfinden", räumt der Forscher ein.

Die Ergebnisse liefern Einblicke in Prozesse, die die chemische Zusammensetzung und elektronische Struktur der Oberfläche verändern. Diese Prozesse besser zu verstehen, hilft bei der Entwicklung von effizienten und langlebigen Photoanoden für die grüne Wasserstoffproduktion.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.