4000. Proteinstruktur an BESSY II entschlüsselt

Die 4000. Proteinstruktur aus dem HZB BESSY, die in der PDB veröffentlicht wurde, zeigt die G64S-Variante von FKBP51 im Komplex mit dem hochselektiven Liganden SAFit (eingezeichnete Struktur).

Die 4000. Proteinstruktur aus dem HZB BESSY, die in der PDB veröffentlicht wurde, zeigt die G64S-Variante von FKBP51 im Komplex mit dem hochselektiven Liganden SAFit (eingezeichnete Struktur). © C. Meyners/TU Darmstadt/HZB

Bei der 4000. Struktur handelt es sich um das Molekül FKBP51, das mit stressinduzierten Erkrankungen wie Depressionen, chronischen Schmerzen und Diabetes zusammenhängt. Das Team um Prof. Dr. Felix Hausch, TU Darmstadt, nutzt die Kenntnis der dreidimensionalen Struktur, um neue Strategien für das Design passender Medikamente zu entwickeln.

Viele Erkrankungen hängen mit Fehlfunktionen von Proteinen im Organismus zusammen. Die dreidimensionale Architektur dieser Moleküle ist oft äußerst komplex, liefert aber wertvolle Hinweise, wie sich die Fehlfunktion beheben ließe, beispielsweise durch Medikamente, die sich perfekt in eine „Tasche“ an das Zielmolekül binden und die Fehlfunktion blockieren. Die Struktur von Proteinen lässt sich mit Röntgenanalysen an den MX-Beamlines von BESSY II entschlüsseln.

In der Protein Data Bank (www.rcsb.org/pdb), die alle experimentell bestimmten Proteinstrukturen enthält, ist nun die 4000. Struktur aus BESSY II eingetragen worden. Das Team um Prof. Felix Hausch von der TU Darmstadt hatte Proteinkristalle aus dem Molekül FKBP51 hergestellt und an den MX-Beamlines untersucht.

Dabei handelt es sich um ein Protein, das eine besondere Rolle bei den großen Gesundheitsproblemen unserer Zeit spielt. Denn FKBP51 reguliert die Signaltransduktion von Steroidhormonrezeptoren, die durch Stress gestört sein kann. Dies kann Depressionen, chronische Schmerzen oder Krankheiten wie Diabetes und Übergewicht auslösen. Das Protein FKBP51 hat sich als vielversprechender Angriffspunkt für Medikamente gegen diese Krankheiten erwiesen. „Die Proteinstrukturanalyse zeigt uns, wo im Molekül interessante „Taschen“ sitzen, die als Zielpunkte für Medikamente in Frage kommen“, sagt Dr. Christian Meyners, TU Darmstadt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Neue Abteilung am HZB: „KI und Biomolekulare Strukturen“
    Nachricht
    07.07.2025
    Neue Abteilung am HZB: „KI und Biomolekulare Strukturen“
    Dr. Andrea Thorn baut seit 1. Juli 2025 am HZB die neue Abteilung „KI und Biomolekulare Strukturen“ auf. Die Biophysikerin bringt langjährige Expertise in KI-basierten Tools für die Strukturbiologie mit und freut sich auf die enge Zusammenarbeit mit dem Team für Makromolekulare Kristallographie an den MX-Beamlines von BESSY II.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.