Recommended reading: Bunsen magazine with focus on molecular water research
Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.
With their report on "Local and collective properties of water", Annette Pietzsch, Robert Seidel and Alexander Föhlisch from HZB describe insights on the nature of water, gained with synchrotron spectroscopy at BESSY II. For example, water, which is normally a perfect insulator, can become metallic under certain conditions.
Other contributions explain the challenges of desalinating seawater, processes in electrolysis or structures in ice on the nanoscale.
These insights help in the design of even better climate models, in environmental research, the design of drugs and vaccines, but also in the development of novel catalysts for green hydrogen or other important technologies.
Downloads
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=24474;sprache=en
- Copy link
-
The twisted nanotubes that tell a story
In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
-
Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University).
-
Bright prospects for tin perovskite solar cells
Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.