HZB physicist appointed to Gangneung-Wonju National University, South Korea

Dr Ji-Gwang Hwang at the new optical beam diagnostics platform at BESSY II. He will now take up a professorship at Gangneung-Wonju National University in South Korea.

Dr Ji-Gwang Hwang at the new optical beam diagnostics platform at BESSY II. He will now take up a professorship at Gangneung-Wonju National University in South Korea. © HZB

Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.

“We are very sad that he is leaving us, he is a great physicist and team mate and has made many important and valuable contributions to our research! But of course, we are also very happy, that he got this offer from a renowned university,”says Andreas Jankowiak, Director of the HZB-Institute for Accelerator Operation, Development and Technology.

Ji-Gwang Hwang has worked on the optical and RF diagnostics of the electron beam in HZB´s storage rings  and bERLinPro and has analysed beam dynamics in BESSY II and a possible short-pulse option for BESSY III. Recently, together with Prof. Gregor Schiwietz, he established a new platform for optical beam diagnostics at BESSY II, which is now available for optimisation of beam operation and future research. Hwang completed his PhD in Accelerator Physics at the Kyungpook National University in Summer 2014 with a thesis on “Beam dynamics in a high brightness injector for a superconducting Energy Recovery Linac”. His first postdoc took the young accelerator physicist to the Korea Institute of Radiological & Medical Sciences, where tumour patients can be treated with accelerated carbon ions. “The position at HZB was perfect to continue my career in science,” he says.

During his time at HZB, Hwang has contributed to more than 10 peer-reviewed publications and obtained a significant patent. "One of the reasons for moving to Korea is my newborn son," says the physicist. "I didn't want to deprive my mother of her precious time with her only grandson." South Korea also invests heavily in research, with almost 5 per cent of its gross domestic product (GDP) spent on research and development*.

As a physics professor, Hwang now also has new responsibilities, including 12 hours of lectures a week and supervising of students. A task he is happy to take on. "It will take a lot of time at first. But in the next few years I will also set up my own laboratory and of course continue to collaborate with HZB," says the physicist. “We will certainly miss Ji-Gwang in our team,”adds group leader Markus Ries.

* https://www.statista.com/statistics/1326558/south-korea-randd-spending-as-share-of-gdp/

arö

  • Copy link

You might also be interested in

  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.