HZB physicist appointed to Gangneung-Wonju National University, South Korea

Dr Ji-Gwang Hwang at the new optical beam diagnostics platform at BESSY II. He will now take up a professorship at Gangneung-Wonju National University in South Korea.

Dr Ji-Gwang Hwang at the new optical beam diagnostics platform at BESSY II. He will now take up a professorship at Gangneung-Wonju National University in South Korea. © HZB

Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.

“We are very sad that he is leaving us, he is a great physicist and team mate and has made many important and valuable contributions to our research! But of course, we are also very happy, that he got this offer from a renowned university,”says Andreas Jankowiak, Director of the HZB-Institute for Accelerator Operation, Development and Technology.

Ji-Gwang Hwang has worked on the optical and RF diagnostics of the electron beam in HZB´s storage rings  and bERLinPro and has analysed beam dynamics in BESSY II and a possible short-pulse option for BESSY III. Recently, together with Prof. Gregor Schiwietz, he established a new platform for optical beam diagnostics at BESSY II, which is now available for optimisation of beam operation and future research. Hwang completed his PhD in Accelerator Physics at the Kyungpook National University in Summer 2014 with a thesis on “Beam dynamics in a high brightness injector for a superconducting Energy Recovery Linac”. His first postdoc took the young accelerator physicist to the Korea Institute of Radiological & Medical Sciences, where tumour patients can be treated with accelerated carbon ions. “The position at HZB was perfect to continue my career in science,” he says.

During his time at HZB, Hwang has contributed to more than 10 peer-reviewed publications and obtained a significant patent. "One of the reasons for moving to Korea is my newborn son," says the physicist. "I didn't want to deprive my mother of her precious time with her only grandson." South Korea also invests heavily in research, with almost 5 per cent of its gross domestic product (GDP) spent on research and development*.

As a physics professor, Hwang now also has new responsibilities, including 12 hours of lectures a week and supervising of students. A task he is happy to take on. "It will take a lot of time at first. But in the next few years I will also set up my own laboratory and of course continue to collaborate with HZB," says the physicist. “We will certainly miss Ji-Gwang in our team,”adds group leader Markus Ries.

* https://www.statista.com/statistics/1326558/south-korea-randd-spending-as-share-of-gdp/

arö

  • Copy link

You might also be interested in

  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.
  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.