Elektrokatalyse unter dem Rasterkraftmikroskop

Mit der neuen Methode wurde die Oberfläche eines bimetallischen Katalysatormaterials in einem wässrigen Medium abgerastert. Die Abbildung zeigt eine Überlagerung des Stromsignals auf eine dreidimensionale Darstellung des Höhenbildes. Dabei sind inselartige Bereiche zu erkennen.

Mit der neuen Methode wurde die Oberfläche eines bimetallischen Katalysatormaterials in einem wässrigen Medium abgerastert. Die Abbildung zeigt eine Überlagerung des Stromsignals auf eine dreidimensionale Darstellung des Höhenbildes. Dabei sind inselartige Bereiche zu erkennen. © M. Munz/HZB

Das Prinzip der korrelativen Rasterkraftmikroskopie: Eine feine Spitze am Ende eines Federbalkens tastet die Oberfläche ab. Dadurch lassen sich Kraftwechselwirkungen zwischen Spitze und Probenoberfläche messen, einschließlich der Reibungskräfte. Liegt zusätzlich eine Spannung an, kann auch der durch den Kontakt fliessende elektrische Strom gemessen werden.

Das Prinzip der korrelativen Rasterkraftmikroskopie: Eine feine Spitze am Ende eines Federbalkens tastet die Oberfläche ab. Dadurch lassen sich Kraftwechselwirkungen zwischen Spitze und Probenoberfläche messen, einschließlich der Reibungskräfte. Liegt zusätzlich eine Spannung an, kann auch der durch den Kontakt fliessende elektrische Strom gemessen werden.

Eine Weiterentwicklung der Rasterkraftmikroskopie macht es nun möglich, das Höhenprofil nanometerfeiner Strukturen sowie den elektrischen Strom und die Reibungskraft an fest-flüssig Grenzflächen zeitgleich abzubilden. Damit gelang es einem Team am Helmholtz-Zentrum Berlin (HZB) sowie am Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft, elektrokatalytisch aktive Materialien zu analysieren und Einblicke zu gewinnen, die für die Katalysatoroptimierung hilfreich sind. Die Methode eignet sich darüber hinaus auch, um Prozesse an Batterieelektroden, bei der Photokatalyse oder an aktiven Biomaterialien zu untersuchen.

Um die Energiewende zu meistern, kommt es auch darauf an, günstige und effiziente Materialien zu entwickeln, die für die Aufspaltung von Wasser oder CO2 durch Elektrokatalyse eingesetzt werden können. Dabei wird ein Teil der elektrischen Energie in den chemischen Reaktionsprodukten gespeichert. Wie effizient solche Elektrokatalysatoren ihre Aufgabe erfüllen, hängt stark davon ab, wie Grenzflächen zwischen Elektroden und Elektrolyt beschaffen sind: Es handelt sich dabei um Grenzflächen zwischen den festen Elektroden und dem typischerweise wässrigen Elektrolyten. Doch eine ortsaufgelöste physikalische Untersuchung solcher fest-flüssig-Grenzflächen war bisher kaum verfügbar.

Rasterkraftmikroskopie kann jetzt mehr

Dr. Christopher S. Kley hat nun mit seinem Team einen neuen Ansatz für die korrelative Rasterkraftmikroskopie entwickelt. Hierbei wird eine extrem scharfe Spitze berührend über die Oberfäche gerastert und deren Höhenprofil aufgezeichnet. Mit der am Ende eines miniaturisierten Federbalkens angebrachten Spitze lassen sich die Kraftwechselwirkungen zwischen Spitze und Probenoberfläche mit hoher Empfindlichkeit messen, einschließlich der Reibungskräfte. Außerdem kann der durch den mechanischen Kontakt fließende elektrische Strom gemessen werden, sofern eine Spannung anliegt. „Damit konnten wir in situ (also unter relevanten Flüssigphasen-Bedingungen, statt im Vakuum oder an der Luft) die elektrische Leitfähigkeit, die mechanisch-chemische Reibung und die morphologischen Eigenschaften bestimmen, und zwar zeitgleich“, betont Kley.

Kupfer-Gold-Elektrokatalysator

Mit dieser Methode untersuchte die Gruppe in Zusammenarbeit mit Prof. Beatriz Roldán Cuenya vom Fritz-Haber-Institut (FHI) nun einen nanostrukturierten und bimetallischen Kupfer-Gold-Elektrokatalysator. Solche Materialien werden beispielsweise für die elektrokatalytische Umwandlung von CO2 in Energieträger eingesetzt. „Wir konnten sehr deutlich Inseln aus Kupferoxid identifizieren, die einen höheren elektrischen Widerstand aufweisen, aber auch Korngrenzen und niedrigleitende Bereiche in der Hydratationsschicht, wo die Katalysatoroberfläche mit dem wässrigen Elektrolyten in Berührung kommt“, sagt Dr. Martin Munz, Erstautor der Studie.

Solche Ergebnisse zu Katalysator-Elektrolyt-Grenzflächen helfen, diese gezielt zu optimieren. „Wir können nun beobachten, wie lokale elektrochemische Umgebungen den Ladungstransfer an der Grenzfläche beeinflussen“, sagt Kley.

Fest-flüssig Grenzflächen im Fokus

„Unsere Ergebnisse sind aber auch generell für die Energieforschung von Interesse, insbesondere die Forschung an elektrochemischen Umwandlungsprozessen, die unter anderem in Batteriesystemen eine Rolle spielen“. Einsichten in fest-flüssig-Grenzflächen können aber auch in ganz anderen Forschungsgebieten hilfreich sein, zum Beispiel für das Verständnis von Korrosionsprozessen, Nanosensorik-Systemen, bis hin zu Fragestellungen in der Fluidik und den Umweltwissenschaften, beispielsweise Auflösungs- oder Ablagerungsprozesse an Metalloberflächen.

Hinweis: Die Weiterentwicklung dieser Messmethode erfolgte im Rahmen des CatLab – Projekts, in dem Teams aus HZB und FHI gemeinsam an der Entwicklung von Dünnschicht-Katalysatoren für die Energiewende arbeiten.  

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.