Elektrokatalyse unter dem Rasterkraftmikroskop

Mit der neuen Methode wurde die Oberfläche eines bimetallischen Katalysatormaterials in einem wässrigen Medium abgerastert. Die Abbildung zeigt eine Überlagerung des Stromsignals auf eine dreidimensionale Darstellung des Höhenbildes. Dabei sind inselartige Bereiche zu erkennen.

Mit der neuen Methode wurde die Oberfläche eines bimetallischen Katalysatormaterials in einem wässrigen Medium abgerastert. Die Abbildung zeigt eine Überlagerung des Stromsignals auf eine dreidimensionale Darstellung des Höhenbildes. Dabei sind inselartige Bereiche zu erkennen. © M. Munz/HZB

Das Prinzip der korrelativen Rasterkraftmikroskopie: Eine feine Spitze am Ende eines Federbalkens tastet die Oberfläche ab. Dadurch lassen sich Kraftwechselwirkungen zwischen Spitze und Probenoberfläche messen, einschließlich der Reibungskräfte. Liegt zusätzlich eine Spannung an, kann auch der durch den Kontakt fliessende elektrische Strom gemessen werden.

Das Prinzip der korrelativen Rasterkraftmikroskopie: Eine feine Spitze am Ende eines Federbalkens tastet die Oberfläche ab. Dadurch lassen sich Kraftwechselwirkungen zwischen Spitze und Probenoberfläche messen, einschließlich der Reibungskräfte. Liegt zusätzlich eine Spannung an, kann auch der durch den Kontakt fliessende elektrische Strom gemessen werden.

Eine Weiterentwicklung der Rasterkraftmikroskopie macht es nun möglich, das Höhenprofil nanometerfeiner Strukturen sowie den elektrischen Strom und die Reibungskraft an fest-flüssig Grenzflächen zeitgleich abzubilden. Damit gelang es einem Team am Helmholtz-Zentrum Berlin (HZB) sowie am Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft, elektrokatalytisch aktive Materialien zu analysieren und Einblicke zu gewinnen, die für die Katalysatoroptimierung hilfreich sind. Die Methode eignet sich darüber hinaus auch, um Prozesse an Batterieelektroden, bei der Photokatalyse oder an aktiven Biomaterialien zu untersuchen.

Um die Energiewende zu meistern, kommt es auch darauf an, günstige und effiziente Materialien zu entwickeln, die für die Aufspaltung von Wasser oder CO2 durch Elektrokatalyse eingesetzt werden können. Dabei wird ein Teil der elektrischen Energie in den chemischen Reaktionsprodukten gespeichert. Wie effizient solche Elektrokatalysatoren ihre Aufgabe erfüllen, hängt stark davon ab, wie Grenzflächen zwischen Elektroden und Elektrolyt beschaffen sind: Es handelt sich dabei um Grenzflächen zwischen den festen Elektroden und dem typischerweise wässrigen Elektrolyten. Doch eine ortsaufgelöste physikalische Untersuchung solcher fest-flüssig-Grenzflächen war bisher kaum verfügbar.

Rasterkraftmikroskopie kann jetzt mehr

Dr. Christopher S. Kley hat nun mit seinem Team einen neuen Ansatz für die korrelative Rasterkraftmikroskopie entwickelt. Hierbei wird eine extrem scharfe Spitze berührend über die Oberfäche gerastert und deren Höhenprofil aufgezeichnet. Mit der am Ende eines miniaturisierten Federbalkens angebrachten Spitze lassen sich die Kraftwechselwirkungen zwischen Spitze und Probenoberfläche mit hoher Empfindlichkeit messen, einschließlich der Reibungskräfte. Außerdem kann der durch den mechanischen Kontakt fließende elektrische Strom gemessen werden, sofern eine Spannung anliegt. „Damit konnten wir in situ (also unter relevanten Flüssigphasen-Bedingungen, statt im Vakuum oder an der Luft) die elektrische Leitfähigkeit, die mechanisch-chemische Reibung und die morphologischen Eigenschaften bestimmen, und zwar zeitgleich“, betont Kley.

Kupfer-Gold-Elektrokatalysator

Mit dieser Methode untersuchte die Gruppe in Zusammenarbeit mit Prof. Beatriz Roldán Cuenya vom Fritz-Haber-Institut (FHI) nun einen nanostrukturierten und bimetallischen Kupfer-Gold-Elektrokatalysator. Solche Materialien werden beispielsweise für die elektrokatalytische Umwandlung von CO2 in Energieträger eingesetzt. „Wir konnten sehr deutlich Inseln aus Kupferoxid identifizieren, die einen höheren elektrischen Widerstand aufweisen, aber auch Korngrenzen und niedrigleitende Bereiche in der Hydratationsschicht, wo die Katalysatoroberfläche mit dem wässrigen Elektrolyten in Berührung kommt“, sagt Dr. Martin Munz, Erstautor der Studie.

Solche Ergebnisse zu Katalysator-Elektrolyt-Grenzflächen helfen, diese gezielt zu optimieren. „Wir können nun beobachten, wie lokale elektrochemische Umgebungen den Ladungstransfer an der Grenzfläche beeinflussen“, sagt Kley.

Fest-flüssig Grenzflächen im Fokus

„Unsere Ergebnisse sind aber auch generell für die Energieforschung von Interesse, insbesondere die Forschung an elektrochemischen Umwandlungsprozessen, die unter anderem in Batteriesystemen eine Rolle spielen“. Einsichten in fest-flüssig-Grenzflächen können aber auch in ganz anderen Forschungsgebieten hilfreich sein, zum Beispiel für das Verständnis von Korrosionsprozessen, Nanosensorik-Systemen, bis hin zu Fragestellungen in der Fluidik und den Umweltwissenschaften, beispielsweise Auflösungs- oder Ablagerungsprozesse an Metalloberflächen.

Hinweis: Die Weiterentwicklung dieser Messmethode erfolgte im Rahmen des CatLab – Projekts, in dem Teams aus HZB und FHI gemeinsam an der Entwicklung von Dünnschicht-Katalysatoren für die Energiewende arbeiten.  

arö

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Science Highlight
    20.03.2023
    Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.
  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.
  • Super-Energiespeicher: Ladungstransport in MXenen untersucht
    Science Highlight
    13.03.2023
    Super-Energiespeicher: Ladungstransport in MXenen untersucht
    MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.