Alexander von Humboldt Foundation Grant for Dr. Jie Wei

Dr. Jie Wei strives to further elucidate the nanoscale structure-property relationships at electrocatalytic interfaces for CO<sub>2</sub> and CO conversion.

Dr. Jie Wei strives to further elucidate the nanoscale structure-property relationships at electrocatalytic interfaces for CO2 and CO conversion. © C. Kley / HZB

In April, Dr. Jie Wei started his research work in the Helmholtz Young Investigator Group Nanoscale Operando CO2 Photo-Electrocatalysis at Helmholtz-Zentrum Berlin (HZB) and Fritz Haber Institute (FHI) of the Max Planck Society. Wei received one of the highly competitive Humboldt postdoctoral research fellowships and will pursue his two-year project under the guidance of the academic hosts Dr. Christopher Kley and Prof. Dr. Beatriz Roldan Cuenya.

Jie Wei is a native of China and obtained his PhD in physical chemistry at the University of Science and Technology of China. He spent two years as a postdoc at Tsinghua University (China). His previous works focused on the interface structure and dynamic behavior of catalysts under reaction conditions using (video-rate) electrochemical scanning tunneling microscopy (STM), differential electrochemical mass spectrometry and in situ Raman spectroscopy.

“I applied for a postdoctoral position in this group because of the hosts’ expertise in employing cutting-edge in situ surface-sensitive characterization techniques for advancing fundamental understanding of catalysts under reaction conditions,” says Wei. “Together, HZB and FHI offer a unique range of cutting-edge experimental resources along with a strong theory support for calculation and modeling of solid-liquid interfaces. Having access to such advanced spectroscopic characterization tools, particularly electrochemical atomic force microscopy, is awesome. I strive to further elucidate the nanoscale structure-property relationships at electrocatalytic interfaces for CO2 and CO conversion,” he continues.

From his stay in Berlin, Wei also expects to expand his scientific expertise, moving towards more sundry methodologies and more complex sample systems.

“With Jie’s expertise, we look forward to pushing forward the field of nanoscale electrocatalysis for renewable energy conversion and storage", says Christopher Kley. “A key for our successful research is a very diverse and open environment. I am delighted that Jie will enrich our team with new perspectives and ideas“, Beatriz Roldan Cuenya adds.

HZB and FHI have been collaborating on catalysis research for several years. Together they operate the BMBF funded large-scale Catalysis Laboratory (CatLab).

The Alexander von Humboldt Foundation annually awards various fellowships to outstanding scientists from all over the world in all disciplines. The fellowships are highly prized, and the “Humboltians”-community counts numerous Nobel Prizes.

red.

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.