Steve Albrecht is one of the “Highly Cited Researchers 2023”

Only a few researchers manage to become internationally recognised in their field. Perovskite researcher Steve Albrecht is one of them, in particular because his team did contribute to several world records for silicon perovskite tandem solar cells.

Only a few researchers manage to become internationally recognised in their field. Perovskite researcher Steve Albrecht is one of them, in particular because his team did contribute to several world records for silicon perovskite tandem solar cells. © M. Setzpfandt / HZB

Every year, countless articles are published in specialist journals. The information service provider Clarivate uses a recognised method to measure the influence of the published articles on the respective subject area. According to this year's evaluation, HZB researcher Steve Albrecht is one of the most "highly cited researchers" having a significant influence on his field. Albrecht and his team have been involved in several world records for tandem solar cells in recent years and have published the results in high-ranking scientific journals. 

Only one in 1000 active researchers belongs to the circle of “Highly Cited Researchers”. Over the past ten years, those selected have produced a number of excellent publications that other work can build on and which are therefore frequently cited. However, citation activity is not the only selection indicator, writes Clarivate, a company that analyses the Web of Science: For example, publications that show evidence of citation cartels or self-citations have been weeded out. This year, 6,849 researchers from 68 countries and regions were honoured.

From the Helmholtz-Zentrum Berlin, Prof. Dr Steve Albrecht was identified as a “Highly Cited Researcher”. Albrecht leads a team researching perovskite materials for solar cells. Together with other groups at HZB and partner institutions, he has set several world records for the efficiency of tandem solar cells. His research is widely recognised, as evidenced by the “Highly Cited Researchers” award, and is making a significant contribution to the advancement of research in solar energy.

Note: HZB researcher Antonio Abate is also one of the "Highly Cited Researchers 2023", albeit not as an HZB researcher, but with an affiliation to one of his previous academic stations.  Abate is also researching perovskite solar cells, which makes HZB perovskite research visible worldwide.

arö

  • Copy link

You might also be interested in

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • HZB wins HR Energy Award 2025 for recruitment campaign
    News
    11.11.2025
    HZB wins HR Energy Award 2025 for recruitment campaign
    The Helmholtz Centre Berlin (HZB) is breaking new ground in attracting talented young people to IT training. HZB was presented with this year's HR Energy Award for its "Go for IT! Recruitainment for IT training" campaign. Gamification elements make the application process more attractive and fairer for young people.
  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.