Steve Albrecht is one of the “Highly Cited Researchers 2023”

Only a few researchers manage to become internationally recognised in their field. Perovskite researcher Steve Albrecht is one of them, in particular because his team did contribute to several world records for silicon perovskite tandem solar cells.

Only a few researchers manage to become internationally recognised in their field. Perovskite researcher Steve Albrecht is one of them, in particular because his team did contribute to several world records for silicon perovskite tandem solar cells. © M. Setzpfandt / HZB

Every year, countless articles are published in specialist journals. The information service provider Clarivate uses a recognised method to measure the influence of the published articles on the respective subject area. According to this year's evaluation, HZB researcher Steve Albrecht is one of the most "highly cited researchers" having a significant influence on his field. Albrecht and his team have been involved in several world records for tandem solar cells in recent years and have published the results in high-ranking scientific journals. 

Only one in 1000 active researchers belongs to the circle of “Highly Cited Researchers”. Over the past ten years, those selected have produced a number of excellent publications that other work can build on and which are therefore frequently cited. However, citation activity is not the only selection indicator, writes Clarivate, a company that analyses the Web of Science: For example, publications that show evidence of citation cartels or self-citations have been weeded out. This year, 6,849 researchers from 68 countries and regions were honoured.

From the Helmholtz-Zentrum Berlin, Prof. Dr Steve Albrecht was identified as a “Highly Cited Researcher”. Albrecht leads a team researching perovskite materials for solar cells. Together with other groups at HZB and partner institutions, he has set several world records for the efficiency of tandem solar cells. His research is widely recognised, as evidenced by the “Highly Cited Researchers” award, and is making a significant contribution to the advancement of research in solar energy.

Note: HZB researcher Antonio Abate is also one of the "Highly Cited Researchers 2023", albeit not as an HZB researcher, but with an affiliation to one of his previous academic stations.  Abate is also researching perovskite solar cells, which makes HZB perovskite research visible worldwide.

arö

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.