Elektronische Inhomogenität in MoS₂-Schichten lässt sich glätten

Die Illustration zeigt MoS2-Gitter (grün: Mo, gelb: S). Der untere Block stellt das Material mit einer frisch abgespaltenen Oberfläche dar. Diese Oberfläche ist unregelmäßig, was sich auch in den Messergebnissen zur elektrischen Struktur der Oberfläche zeigt (eingeblendete farbige Karte). Der obere Block zeigt diese Oberfläche nach Behandlung mit atomarem Wasserstoff (weiße Kugeln). Dadurch wird die Oberfläche gleichmäßiger. 

Die Illustration zeigt MoS2-Gitter (grün: Mo, gelb: S). Der untere Block stellt das Material mit einer frisch abgespaltenen Oberfläche dar. Diese Oberfläche ist unregelmäßig, was sich auch in den Messergebnissen zur elektrischen Struktur der Oberfläche zeigt (eingeblendete farbige Karte). Der obere Block zeigt diese Oberfläche nach Behandlung mit atomarem Wasserstoff (weiße Kugeln). Dadurch wird die Oberfläche gleichmäßiger.  © Martin Künsting/HZB

Molybdändisulfid (MoS₂) kann z. B. als Gassensor oder als Photokatalysator bei der grünen Wasserstoffproduktion eingesetzt werden. Obwohl man in der Regel mit der Untersuchung der kristallinen Grundform beginnt, um ein Material zu verstehen, gibt es für MoS₂ viel mehr Studien zu ein- und mehrlagigen Molekularschichten als zum massiven Material. Die wenigen Studien, die bisher durchgeführt wurden, zeigen unterschiedliche und nicht reproduzierbare Ergebnisse für die elektronischen Eigenschaften von frisch abgespaltenen MoS₂-Oberflächen. Diese Frage hat nun ein Team an BESSY II systematisch untersucht. 

Dr. Erika Giangrisostomi und ihr Team am HZB haben die systematische Studie an der LowDosePES-Endstation an BESSY II durchgeführt. Sie nutzten Röntgen-Photoelektronenspektroskopie, um die Elektronenenergien über große Oberflächenbereiche von MoS2-Proben zu kartieren. So konnten sie die Veränderungen der elektronischen Eigenschaften von frisch abgespaltenen Oberflächen im Ultrahochvakuum nach dem Tempern und der Einwirkung von atomarem und molekularem Wasserstoff vor Ort verfolgen.

Zwei wesentliche Erkenntnisse hat das Team gewonnen. Erstens zeigt die Studie erhebliche Schwankungen bei den Elektronenenergien für die frisch gespaltenen Oberflächen und demonstriert damit, wie leicht es zu unterschiedlichen Ergebnissen kommen kann. Zweitens zeigt die Studie, dass die Behandlung mit atomarem Wasserstoff bei Raumtemperatur die elektronische Inhomogenität und Instabilität der Oberfläche wirksam neutralisiert. Ein Grund dafür liegt darin, dass Wasserstoffatome ein Elektron entweder annehmen oder abgeben können. „Unsere Hypothese ist, dass atomarer Wasserstoff bei der Neu-Ordnung von Schwefel-Fehlstellen oder Schwefel-Überschuss hilft und so zu einer gleichmäßigeren Verteilung beiträgt“, sagt Erika Giangrisostomi.

Diese Studie ist ein wichtiger Schritt bei der Erforschung von MoS2. Denn MoS2 wird bereits vielfältig eingesetzt, so dass diese Einblicke für Fachleute in der Elektronik, Photonik, Sensorik und Katalyse interessant sind.

Sonal Mistry

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.