Elektronische Inhomogenität in MoS₂-Schichten lässt sich glätten

Die Illustration zeigt MoS2-Gitter (grün: Mo, gelb: S). Der untere Block stellt das Material mit einer frisch abgespaltenen Oberfläche dar. Diese Oberfläche ist unregelmäßig, was sich auch in den Messergebnissen zur elektrischen Struktur der Oberfläche zeigt (eingeblendete farbige Karte). Der obere Block zeigt diese Oberfläche nach Behandlung mit atomarem Wasserstoff (weiße Kugeln). Dadurch wird die Oberfläche gleichmäßiger. 

Die Illustration zeigt MoS2-Gitter (grün: Mo, gelb: S). Der untere Block stellt das Material mit einer frisch abgespaltenen Oberfläche dar. Diese Oberfläche ist unregelmäßig, was sich auch in den Messergebnissen zur elektrischen Struktur der Oberfläche zeigt (eingeblendete farbige Karte). Der obere Block zeigt diese Oberfläche nach Behandlung mit atomarem Wasserstoff (weiße Kugeln). Dadurch wird die Oberfläche gleichmäßiger.  © Martin Künsting/HZB

Molybdändisulfid (MoS₂) kann z. B. als Gassensor oder als Photokatalysator bei der grünen Wasserstoffproduktion eingesetzt werden. Obwohl man in der Regel mit der Untersuchung der kristallinen Grundform beginnt, um ein Material zu verstehen, gibt es für MoS₂ viel mehr Studien zu ein- und mehrlagigen Molekularschichten als zum massiven Material. Die wenigen Studien, die bisher durchgeführt wurden, zeigen unterschiedliche und nicht reproduzierbare Ergebnisse für die elektronischen Eigenschaften von frisch abgespaltenen MoS₂-Oberflächen. Diese Frage hat nun ein Team an BESSY II systematisch untersucht. 

Dr. Erika Giangrisostomi und ihr Team am HZB haben die systematische Studie an der LowDosePES-Endstation an BESSY II durchgeführt. Sie nutzten Röntgen-Photoelektronenspektroskopie, um die Elektronenenergien über große Oberflächenbereiche von MoS2-Proben zu kartieren. So konnten sie die Veränderungen der elektronischen Eigenschaften von frisch abgespaltenen Oberflächen im Ultrahochvakuum nach dem Tempern und der Einwirkung von atomarem und molekularem Wasserstoff vor Ort verfolgen.

Zwei wesentliche Erkenntnisse hat das Team gewonnen. Erstens zeigt die Studie erhebliche Schwankungen bei den Elektronenenergien für die frisch gespaltenen Oberflächen und demonstriert damit, wie leicht es zu unterschiedlichen Ergebnissen kommen kann. Zweitens zeigt die Studie, dass die Behandlung mit atomarem Wasserstoff bei Raumtemperatur die elektronische Inhomogenität und Instabilität der Oberfläche wirksam neutralisiert. Ein Grund dafür liegt darin, dass Wasserstoffatome ein Elektron entweder annehmen oder abgeben können. „Unsere Hypothese ist, dass atomarer Wasserstoff bei der Neu-Ordnung von Schwefel-Fehlstellen oder Schwefel-Überschuss hilft und so zu einer gleichmäßigeren Verteilung beiträgt“, sagt Erika Giangrisostomi.

Diese Studie ist ein wichtiger Schritt bei der Erforschung von MoS2. Denn MoS2 wird bereits vielfältig eingesetzt, so dass diese Einblicke für Fachleute in der Elektronik, Photonik, Sensorik und Katalyse interessant sind.

Sonal Mistry

  • Link kopieren

Das könnte Sie auch interessieren

  • Ein Rekordjahr für unser Reallabor für BIPV
    Nachricht
    22.01.2026
    Ein Rekordjahr für unser Reallabor für BIPV
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    Science Highlight
    19.01.2026
    Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    So genannte Ewigkeitschemikalien oder PFAS-Verbindungen sind ein zunehmendes Umweltproblem. Ein innovativer Ansatz für die Aufbereitung von Wasser und Böden in PFAS-belasteten Gebieten kommt jetzt aus der Beschleunigerphysik: Hochenergetische Elektronen können PFAS-Moleküle durch Radiolyse in unschädliche Bestandteile zerlegen. Ein am HZB entwickelter Beschleuniger auf Basis eines SHF-Photoinjektors kann den dafür nötigen Elektronenstrahl liefern, zeigt nun eine Studie in PLOS One.
  • Verdrehte Nanoröhren, die eine Geschichte erzählen
    Nachricht
    09.12.2025
    Verdrehte Nanoröhren, die eine Geschichte erzählen
    In Zusammenarbeit mit deutschen Wissenschaftlern haben EPFL-Forscher gezeigt, dass die spiralförmige Geometrie winziger, verdrillter Magnetröhren genutzt werden kann, um Daten zu übertragen, die nicht auf Elektronen, sondern auf Quasiteilchen, den Magnonen, basieren.