BESSY II: Was Ionen durch Polymermembranen treibt

Membran.

Membran. © HZB

Photoelektrolyseure und Elektrolysezellen können grünen Wasserstoff oder fossilfreie Kohlenstoffverbindungen erzeugen – allerdings benötigen sie Ionenaustausch-Membranen. Ein HZB-Team hat nun in einem hybriden Flüssiggas-Elektrolyseur an der Röntgenquelle BESSY II den Transport von Ionen durch die Membran untersucht. Anders als erwartet treiben Konzentrationsunterschiede aber kaum elektrische Felder Ionen an. Die Diffusion ist also der entscheidende Prozess. Diese Erkenntnis könnte bei der Entwicklung hocheffizienter und deutlich umweltfreundlicherer Membranmaterialien helfen.

Ionenaustausch-Membranen werden in (Photo)elektrolyseuren, Brennstoffzellen und Batterien benötigt, um Ionen zu trennen und die gewünschten Prozesse zu ermöglichen. Synthetisch produzierte Polymermembranen wie NAFION sind dabei besonders effizient, aber leider nicht abbaubar. In der Europäischen Union wird derzeit ein Verbot solcher „Ewigkeits-Chemikalien“ diskutiert. Die Entwicklung geeigneter Alternativen ist jedoch eine Herausforderung. Daher ist es wichtig, besser zu verstehen, warum NAFION und andere etablierte Polymermembranen so gut funktionieren.

Ein Team um Dr. Marco Favaro vom HZB-Institut für Solare Brennstoffe hat diese Frage nun mit einer speziellen Art von Elektrolysezelle untersucht. In diesem Zelltyp sitzt die Membran an der Außenwand und steht so sowohl mit dem flüssigen Elektrolyten als auch mit einer gasförmigen äußeren Umgebung in Kontakt. Je nach Polarität des angelegten Potenzials wirkt die Membran entweder als Anode oder als Kathode. Dieser hybride Flüssiggas-Elektrolyseur gilt als besonders vorteilhaft für die elektrochemische Umwandlung von CO2, da in der Gasphase höhere CO2-Konzentrationen möglich sind als in wässrigen Lösungen.

Für die Studie verwendeten Favaro und sein Team handelsübliche Ionenaustauschmembranen in Kontakt mit einem Modellelektrolyten wie Natriumchlorid (NaCl) in Wasser. Der Gasphase wurde Wasserdampf zugeführt. Die Migration von Natrium- und Chloridionen durch die Membranen konnte mit Röntgenphotoelektronenspektroskopie bei Umgebungsdruck (AP-HAXPES) an der SpAnTeX-Endstation an der KMC-1-Beamline von BESSY II untersucht werden. „Wir hatten eigentlich erwartet, dass die Dynamik der Ionen durch die elektrischen Felder zwischen Anode und Kathode des Elektrolyseurs bestimmt wird, und dass die Elektromigration der Hauptfaktor ist“, sagt Marco Favaro.

Ionenaustausch-Membranen sind Schlüsselkomponente

Die Analyse der Daten zeigte jedoch das Gegenteil. Elektromigration spielt kaum eine Rolle, die Ionen diffundieren einfach durch die Membran. Ein Diffusionsmodell simuliert die Daten numerisch perfekt. „Wir folgern daraus, dass Ionen die Polymermembranen in diesen Elektrolyseuren durchdringen, und zwar aufgrund von Sprüngen, die durch die in den Membranen vorhandenen ionisierten funktionellen Gruppen vermittelt werden. Da außerdem auch Wasser durch das Polymer diffundiert, werden die Ionen „mitgeschleppt“, erklärt Favaro.

Diese Ergebnisse sind aus einer Reihe von Gründen interessant. Denn solche hybriden Elektrolyseure ermöglichen es, CO2 in wertvolle Chemikalien umzuwandeln, die sonst nur aus fossilen Brennstoffen gewonnen werden können. Zu verstehen, wie diese Elektrolyseure funktionieren, hilft auf dem Weg zur Dekarbonisierung der Wirtschaft. Dabei sind die Ionenaustausch-Membranen eine Schlüsselkomponente. Die bisher verwendeten Polymerverbindungen sind jedoch nicht abbaubar. Es ist daher überaus wichtig, die relevanten Triebkräfte von Transportprozessen zu verstehen, um neue Membranmaterialien zu entwickeln, die effizient und umweltfreundlich sind. Favaro will dieses Projekt nun am HIPOLE vorantreiben, dem neuen Helmholtz-Institut in Jena, das sich auf die Entwicklung von neuen Polymermaterialien für Energietechnologien konzentriert.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.