Grüner Wasserstoff: Iridium-Katalysatoren mit Titanoxiden verbessern

Die Iridium-Atome (rot) sind in unterschiedliche Titanoxide eingebettet, die für mehr Stabilität sorgen. 

Die Iridium-Atome (rot) sind in unterschiedliche Titanoxide eingebettet, die für mehr Stabilität sorgen.  © Marianne van der Merwe

Anoden für die elektrolytische Aufspaltung von Wasser bestehen meist aus Iridium-basierten Materialien. Um die Stabilität des Iridium-Katalysators zu erhöhen, hat nun ein Team am HZB mit einer Gruppe des HI-ERN eine Probe hergestellt, in der die Konzentration von Iridium und Titanoxiden systematisch variiert. Analysen der einzelnen Probensegmente an BESSY II im EMIL-Labor zeigten, dass sich die Stabilität des Iridium-Katalysators signifikant steigern lässt.

Eine Option, um Energie aus Sonne oder Wind zu speichern, ist die Produktion von „grünem“ Wasserstoff durch Elektrolyse. Wasserstoff speichert Energie in chemischer Form und setzt sie bei Verbrennung wieder frei, wobei keine Abgase entstehen, sondern nur Wasser. Heute wird Iridium als „State-of-the Art“-Katalysator genutzt. Allerdings löst sich Iridium im sauren Milieu der Elektrolysezelle zunehmend auf, so dass die katalytische Wirkung schnell nachlässt.

„Wir wollten untersuchen, ob sich die Stabilität des Katalysators durch Beimischung unterschiedlicher Anteile von Titanoxid verbessert“, sagt Prof. Dr. Marcus Bär (HZB). Titanoxid ist katalytisch zwar nicht aktiv, aber stabil. „Wir hatten Hinweise darauf, dass die Titanoxid-Präsenz sich positiv auf die Stabilität auswirkt, ohne die katalytische Wirkung des Iridiums zu beeinflussen. Wir wollten aber auch herausfinden, ob es da ein ideales Mischungsverhältnis gibt.“

Eine Probe als Materialbibliothek

Die Probe wurde am Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien (HI-ERN) im Team von Prof. Dr. Olga Kasian durch Aufsputtern von Titan und Iridium mit lokal variierender Zusammensetzung hergestellt. Es handelt sich um eine so genannte Dünnfilm-Materialbibliothek, auf der die Iridium-Anteile von 20 % bis 70 % variieren.

An BESSY II analysierte das Team mit röntgenspektroskopischen Methoden, wie sich die chemische Struktur in Abhängigkeit vom Iridium-Gehalt der gemischten Iridium-Titanoxidproben änderte. Dabei spielten mehrere Effekte eine Rolle: So verbesserte die Gegenwart von Titan-Suboxiden (wie TiO und TiOx) die Leitfähigkeit des Materials. Spannend war auch der Befund, dass sich ein Teil der Titanoxide schneller im wässrigen Elektrolyten löste als Iridium, wodurch Mikroporen an der Oberfläche entstanden. Dadurch kamen mehr Iridium-Atome aus unteren Lagen in Kontakt mit dem Elektrolyten, was die Sauerstoffentwicklungsreaktion beschleunigte. Der Haupteffekt war jedoch, dass die Anwesenheit von Titanoxiden (TiO2, sowie TiO und TiOx) tatsächlich die Auflösung von Iridium deutlich reduzierte. „Bei der Probe mit 30 % Titanzusatz im Vergleich zu einem reinen Iridium-Elektrodenmaterial konnten wir eine um etwa 70 % geringere Iridium-Auflösung sehen“, sagt Marianne van der Merwe, die die Messungen im Rahmen ihrer Promotion bei Marcus Bär durchgeführt hatte.

Praxisrelevanz hoch

Doch wie relevant sind solche Ergebnisse aus der Laborforschung für die Industrie? „Wenn es etablierte Technologien gibt, ist es zunächst immer schwer, etwas zu ändern“, sagt Marcus Bär. „Aber wir zeigen hier, wie sich mit überschaubarem Aufwand die Stabilität der Anoden erhöhen lässt.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.