BESSY II: Molecular orbitals determine stability

Molecular geometry structures of the trans- and cis-isomers fumarate and maleate (above, left to right) together with their hydrogenated molecule, succinate  dianions (below).

Molecular geometry structures of the trans- and cis-isomers fumarate and maleate (above, left to right) together with their hydrogenated molecule, succinate  dianions (below). © HZB

Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.

Carboxylic acid dianions of the type C4H2O4 or C4H4O4 (fumarate, maleate and succinate) can have different geometries (cis or trans) and different properties. Some variants are key in coordination chemistry, incorporating metallic elements into organic compounds, other variants play a role in biological processes. Fumarate and succinate, for example, are formed as intermediate products in the mitochondria of cells. Maleate, on the other hand, which is usually not formed in natural processes, is used in industrial applications that require durable materials. For environmental reasons, however, the question arises as to whether these compounds last forever or are biodegradable.

The stability of fumarate, maleate and succinate dianions is not only influenced by their molecular geometries, but also by the electronic structure of the molecules, in particular the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). However, the influence of the molecular orbitals on stability of these molecules has not been researched.

RIXS and XAS at BESSY II

Now, a team at HZB led by Prof. Alexander Föhlisch has elucidated the influence of the electronic structure on the stability of fumarate, maleate and succinate dianions. “We analysed these compounds at BESSY II with two different, very powerful methods,” says Dr Viktoriia Savchenko, first author of the study. X-ray absorption spectroscopy (XAS) can be used to investigate the unoccupied electronic states of a system, while resonant inelastic X-ray scattering (RIXS) provides information about the occupied highest orbitals and about interactions between the HOMO-LUMO orbitals. The results can be related to macroscopic properties, especially stability.

Maleate potentially less stable

The analysis of the spectral data shows that maleate is potentially less stable than fumarate and succinate. What’s more: The analysis also explains why: The electronic density in the HOMO orbital at the C=C bond between carboxylate groups could lead to weaker binding of maleate with molecules or ions. Fumarate and succinate, on the other hand, could be more stable, as their HOMO orbitals are equally delocalised.

“This means that there is a chance that maleate could be degraded by certain substances,” says Savchenko.

 

arö

  • Copy link

You might also be interested in

  • MAX IV and BESSY II initiate new collaboration to advance materials science
    News
    17.06.2025
    MAX IV and BESSY II initiate new collaboration to advance materials science
    Swedish national synchrotron laboratory MAX IV and Helmholtz-Zentrum Berlin (HZB) with BESSY II light source jointly announce the signing of a 5-year Cooperation Agreement. The new agreement establishes a framework to strengthen cooperation for operational and technological development in the highlighted fields of accelerator research and development, beamlines and optics, endstations and sample environments as well as digitalisation and data science.
  • Michael Naguib is visiting HZB as a Humboldt Research Awardee
    News
    16.06.2025
    Michael Naguib is visiting HZB as a Humboldt Research Awardee
    Professor Michael Naguib, from Tulane University in the USA, is one of the discoverers of a new class of 2D materials: MXenes are characterised by a puff pastry-like structure and have many applications, such as in the production of green hydrogen or as storage media for electrical energy. During his Humboldt Research Award in 2025, Professor Naguib is working with Prof Volker Presser at the Leibniz Institute for New Materials in Saarbrücken and with Dr Tristan Petit at HZB.
  • AI in Chemistry: Study Highlights Strengths and Weaknesses
    News
    04.06.2025
    AI in Chemistry: Study Highlights Strengths and Weaknesses
    How well does artificial intelligence perform compared to human experts? A research team at HIPOLE Jena set out to answer this question in the field of chemistry. Using a newly developed evaluation method called “ChemBench,” the researchers compared the performance of modern language models such as GPT-4 with that of experienced chemists.