ERC Consolidator Grant for HZB researcher Robert Seidel

Dr. Robert Seidel was awarded an ERC Consolidator Grant for his research project WATER X.

Dr. Robert Seidel was awarded an ERC Consolidator Grant for his research project WATER X. © HZB / Kevin Fuchs

The WATER-X research project is funded by the EU under the project number 101126299.

The WATER-X research project is funded by the EU under the project number 101126299.

Physicist Dr Robert Seidel has been awarded a Consolidator Grant by the European Research Council (ERC). Over the next five years, he will receive a total of two million euros for his research project WATER-X. Seidel will use state-of-the-art X-ray techniques at BESSY II to study nanoparticles in aqueous solution for the photocatalytic production of "green" hydrogen.

With the Consolidator Grant, the ERC supports researchers with several years of experience who are now planning a large-scale research project. The physicist Robert Seidel is an expert in X-ray methods at BESSY II. In high-profile published studies, he has already shown that water still holds many surprises.

In his ERC project WATER-X, he is focusing on the process of photocatalysis, in which water molecules are split into hydrogen and oxygen. If the energy required for the catalysis comes from renewable sources, the hydrogen produced is considered "green". Hydrogen will play an important role in the fossil-free energy system of the future, whether as energy storage, fuel or raw material for industry. However, catalysts are needed for a highly efficient process, and this is where the WATER-X project comes in.

"In WATER-X, we will investigate the ultrafast processes on catalytically active nanoparticles in water that can be activated by light," says Seidel. While the entire photocatalytic water splitting process is relatively slow (milliseconds to seconds), the light-induced processes on the catalyst particles are so fast (picoseconds to nanoseconds) that they have been very difficult to study experimentally. The team will focus on four different transition metal oxides that can be activated by light (photons) and are considered interesting candidates for inexpensive and efficient catalysts.

 Seidel will investigate these picosecond processes at the interfaces of transition metal oxide nanoparticles in water by combining the "liquid microjet setup" at BESSY II with time-resolved femtosecond laser photoelectron spectroscopy. For the first time, short-lived molecular intermediates and their decay mechanisms could be precisely observed experimentally.

"At the end of the WATER-X project, we will understand the light-induced processes between catalyst nanoparticles and water much better and also, how to improve them," says Seidel. This could significantly accelerate the development of novel, highly efficient catalysts for many purposes, not just green hydrogen.

The WATER-X research project is funded by the EU under the project number 101126299.

WATER-X: PHOTO-INDUCED ELECTRON DYNAMICS AT THE TRANSITION-METAL OXIDE–WATER INTERFACE FROM TIME RESOLVED LIQUID-JET PHOTOEMISSION

arö

  • Copy link

You might also be interested in

  • Berlin Science Award goes to Philipp Adelhelm
    News
    24.07.2025
    Berlin Science Award goes to Philipp Adelhelm
    Battery researcher Prof. Dr. Philipp Adelhelm has been awarded the 2024 Berlin Science Award. He is a professor at the Institute of Chemistry at Humboldt University in Berlin (HU) and heads a joint research group at HU and the Helmholtz Zentrum Berlin (HZB). The materials scientist and electrochemist is investigating sustainable batteries, which play a key role in the success of the energy transition. He is one of the leading international experts in the field of sodium-ion batteries.
  • Scrolls from Buddhist shrine virtually unrolled at BESSY II
    Science Highlight
    23.07.2025
    Scrolls from Buddhist shrine virtually unrolled at BESSY II
    The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.
  • Helmholtz Doctoral Award for Hanna Trzesniowski
    News
    09.07.2025
    Helmholtz Doctoral Award for Hanna Trzesniowski
    During her doctoral studies at the Helmholtz Centre Berlin, Hanna Trzesniowski conducted research on nickel-based electrocatalysts for water splitting. Her work contributes to a deeper understanding of alkaline water electrolysis and paves the way for the development of more efficient and stable catalysts. On 8 July 2025, she received the Helmholtz Doctoral Prize, which honours the best and most original doctoral theses in the Helmholtz Association.