Befruchtung unter dem Röntgenstrahl

© Joana C. Carvalho

Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.

Die Befruchtung bei Säugetieren beginnt, wenn sich ein Spermium an die Eihülle heftet: diese Hülle muss das Spermium durchdringen, um mit der Eizelle zu verschmelzen. Jetzt hat ein internationales Team die Struktur und Funktion des Proteins ZP2 im Detail entschlüsselt. ZP2 ist eine Komponente des Eihüllenfilaments, die eine Schlüsselrolle bei der Regulierung der Interaktion zwischen Ei- und Samenzelle bei der Befruchtung spielt.

"Es war bekannt, dass ZP2 gespalten wird, nachdem das erste Spermium in die Eizelle eingedrungen ist, und wir erklären, wie dieses Ereignis die Eihülle härter und undurchlässiger für andere Spermien macht", sagt Luca Jovine, Professor am Department of Biosciences and Nutrition, Karolinska Institutet, der die Studie leitete. "Dies verhindert Polyspermie - die Verschmelzung mehrerer Spermien mit einer einzigen Eizelle - was für den Embryo fatal ist“.

Einsatz von KI Alphafold

Die Forscher*innen kombinierten Röntgenkristallographie und Kryo-EM, um die 3D-Struktur der Eihüllenproteine zu untersuchen. Die Interaktion zwischen Spermien und Eiern, die Mutationen im ZP2-Protein tragen, wurde an Mäusen untersucht, während das KI-Programm AlphaFold verwendet wurde, um die Struktur der Eihülle beim Menschen vorherzusagen.

Die Studie wurde in Zusammenarbeit mit den Universitäten Osaka und Sophia in Japan und der Universität Pittsburgh in den USA durchgeführt, die Messdaten stammen aus Experimenten bei SciLifeLab und an den Röntgenquellen ESRF, DLS und BESSY II.

Karolinska Institutet

  • Link kopieren

Das könnte Sie auch interessieren

  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.