MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer

Aufnahmen einer zerlegten Li-Ionen-Batterie mit zyklischer MXene-Elektrode (grün), Elektrolyt/Karbonat-Spezies (rot) und Separator (gelb). Mehr Erläuterungen zur Bildgebung finden sich in der Publikation.

Aufnahmen einer zerlegten Li-Ionen-Batterie mit zyklischer MXene-Elektrode (grün), Elektrolyt/Karbonat-Spezies (rot) und Separator (gelb). Mehr Erläuterungen zur Bildgebung finden sich in der Publikation. © HZB

Was ist das Besondere an den MXenen und warum ist die neue Methode so wertvoll? In wenigen Bildern schafft der kurze Cartoon es, diese Fragen zu beantworten. Erstellt wurden die Bilder mit Hilfe von ChatGPT.

Was ist das Besondere an den MXenen und warum ist die neue Methode so wertvoll? In wenigen Bildern schafft der kurze Cartoon es, diese Fragen zu beantworten. Erstellt wurden die Bilder mit Hilfe von ChatGPT. © Faidra Amargianou/ChatGPT

Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.

Seit ihrer Entdeckung im Jahr 2011 haben MXene aufgrund ihrer vielseitigen, abstimmbaren Eigenschaften und interessanter Anwendungen - von der Energiespeicherung bis zur elektromagnetischen Abschirmung - großes wissenschaftliches Interesse geweckt. Auf der Nanoskala finden dabei komplexe chemische Prozesse statt.

Das Team von Dr. Tristan Petit hat nun einen bedeutenden Fortschritt bei der Charakterisierung von MXenen erzielt. Sie nutzten die Raster-Röntgenmikroskopie (Scanning X-ray microscopy oder SXM), um die chemische Bindung von Ti3C2Tx-MXenen mit hoher räumlicher und spektraler Auflösung zu untersuchen. Dabei steht Tx für unterschiedliche Endgruppen (Tx=O, OH, F, Cl). Das Neue ist, dass die Messdaten gleichzeitig über zwei Detektionsmodi erfasst werden, der Transmission und der Elektronenausbeute. Dies ermöglicht unterschiedliche Sondierungstiefen.

Das Experiment, das an der MAXYMUS-Beamline von BESSY II stattfand, lieferte detaillierte Einblicke in die chemische Zusammensetzung und Struktur von MXenen. Faidra Amargianou, die Erstautorin der Studie, sagt dazu: "Unsere Ergebnisse werfen ein Licht auf die chemischen Bindungen innerhalb der MXene-Struktur und mit den umgebenden Spezies und bieten neue Perspektiven für ihre Nutzung in verschiedenen Anwendungen, insbesondere in der elektrochemischen Energiespeicherung."

Zum ersten Mal wurde SXM eingesetzt, um MXene abzubilden, wodurch Details der lokalen Bindungen zwischen Titan und Endverbindungen innerhalb der MXen-Struktur sichtbar wurden. Die Forscher untersuchten auch den Einfluss verschiedener Synthesewege auf die MXen-Chemie und beleuchteten die Auswirkungen von Endungen auf die elektronischen Eigenschaften von MXene.

Darüber hinaus lieferte die Anwendung von SXM bei der Analyse von MXen-basierten Materialien in Lithium-Ionen-Batterien wertvolle Erkenntnisse über die Veränderungen in der MXen-Chemie nach dem Batteriewechsel. Faidra Amargianou erklärt: "Der Großteil der MXen-Elektrode bleibt während der elektrochemischen Zyklen stabil, mit Anzeichen einer möglichen Li+-Einlagerung. Der Elektrolyt führt nicht zum Abbau des MXens und liegt auf der MXenelektrode auf".

Die Studie liefert wertvolle Einblicke in die lokale Chemie von MXenen und verdeutlicht das Potenzial der SXM für die Charakterisierung anderer Schichtmaterialien. Petit schlussfolgert: "Chemische Bildgebungsverfahren wie SXM können dazu genutzt werden, um die Wechselwirkungen von Schichtmaterialien in komplexen Systemen zu entschlüsseln. Wir arbeiten derzeit daran, elektrochemische SXM-Messungen in situ direkt in flüssiger Umgebung zu ermöglichen. "

Weitere Informationen:

Dieses Projekt wurde vom Europäischen Forschungsrat (ERC) im Rahmen des Forschungs- und Innovationsprogramms "Horizont 2020" der Europäischen Union gefördert (Fördervereinbarung Nr. 947852).

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.