IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert

Infrarotabbildung des Nucleolus im Zellkern einer Fibroblastenzelle. Der Skalenstrich entspricht 500 Nanometern.

Infrarotabbildung des Nucleolus im Zellkern einer Fibroblastenzelle. Der Skalenstrich entspricht 500 Nanometern. © HZB

Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.

Die Infrarot Beamline IRIS am Speicherring BESSY II ist die einzige Infrarot-Beamline in Deutschland, die auch externen Nutzergruppen zur Verfügung steht und ist entsprechend stark nachgefragt. Dr. Ulrich Schade, der für die Beamline verantwortlich ist, entwickelt die Instrumente gemeinsam mit seinem Team weiter, um einzigartige, hochmoderne IR-Spektroskopie-Experimentiertechniken zu ermöglichen.

Im Rahmen eines kürzlich durchgeführten größeren Upgrades der Beamline errichtete das Team zusammen mit dem Institut für Chemie der HUB ein zusätzliches Infrarot-Nahfeldmikroskop (scattering-type scanning near-field optical microscope).

„Mit dem Nanoskop können wir Strukturen kleiner als ein Tausendstel des Haardurchmessers auflösen und kommen somit in Bereiche der innersten Strukturen von zum Beispiel biologischen Systemen, Katalysatoren, Polymeren und Quantenmaterialien“, sagt Dr. Alexander Veber, der diese Erweiterung durchgeführt hat.

Die neue Nanospektroskopie-Endstation basiert auf einem optischen Rastermikroskop und ermöglicht Bildgebung und Spektroskopie mit Infrarotlicht mit einer räumlichen Auflösung von mehr als 30 nm. Um die Leistungsfähigkeit der neuen Endstation zu demonstrieren, untersuchte Veber einzelne Zellulose-Mikrofibrillen und bildete Zellstrukturen ab. Alle Endstationen sind für nationale und internationale Nutzergruppen verfügbar.

Förderung: Bundesministerium für Bildung und Forschung [grant No. project 05K19KH1 (SyMS)]; Germany's Excellence Strategy (grant No. EXC 2008-390540038 – UniSysCat).

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.