Dynamic measurements in liquids now possible in the laboratory

The dashed black lines mark the first thin liquid 'sheet' in which the molecules are dissolved. There are two nozzles in the upper part and a collecting vessel in the lower part (left image). Transmission image of the flat jet (centre image). X-ray spectrum of the solution on the CCD detector (right image).

The dashed black lines mark the first thin liquid 'sheet' in which the molecules are dissolved. There are two nozzles in the upper part and a collecting vessel in the lower part (left image). Transmission image of the flat jet (centre image). X-ray spectrum of the solution on the CCD detector (right image). © HZB

A team of researchers in Berlin has developed a laboratory spectrometer for analysing chemical processes in solution - with a time resolution of 500 ps. This is of interest not only for the study of molecular processes in biology, but also for the development of new catalyst materials. Until now, however, this usually required synchrotron radiation, which is only available at large, modern X-ray sources such as BESSY II. The process now works on a laboratory scale using a plasma light source.

"Our laboratory setup now makes this measurement method available to a wider community," says HZB physicist Dr. Ioanna Mantouvalou, who drove the development together with partners from the Technische Universität Berlin, the Max Born Institute, the Physikalisch-Technische Bundesanstalt and the company Nano Optics Berlin. "In a first step, the laboratory measurements can also more precisely define where further analyses at synchrotron sources are useful and promising. This allows us to make better use of scarce resources," says Mantouvalou.

Time-resolved soft X-ray spectroscopy provides access to the properties of organic materials and is therefore ideal for studying dynamic changes in the electronic structure of individual elements in disordered systems. However, measurements of liquid solutions in which these molecules or complexes are dissolved are particularly challenging. They require a high photon flux and extremely low noise. Therefore, these experiments require usually large-scale facilities such as modern synchrotron light sources.

In contrast, the new laboratory instrument uses light from a plasma created by the interaction of an intense laser pulse with metal. The new instrument provides a time resolution of 500 picoseconds and allows a very "stable" detection. "We were able to demonstrate this in our study using two examples in an aqueous solution. We analysed the metal complex compounds [Ni(CN)4]2- and [Fe(bpy)3]2+," says Richard Gnewkow, first author and PhD student in Mantouvalou's team.

arö

  • Copy link

You might also be interested in

  • Prashanth Menezes awarded prestigious VAIBHAV Fellowship by Government of India
    News
    09.10.2025
    Prashanth Menezes awarded prestigious VAIBHAV Fellowship by Government of India
    The Ministry of Science and Technology, Government of India, has announced the recipients of the Vaishvik Bhartiya Vaigyanik (VAIBHAV) Fellowship, a flagship initiative aimed at fostering collaboration between the Indian STEMM (Science, Technology, Engineering, Mathematics, and Medicine) diaspora and leading research institutions in India. Among the 2025 awardees is Dr. Prashanth W. Menezes, Head of the Department of Materials Chemistry for Catalysis at Helmholtz-Zentrum Berlin (HZB).
  • Sasol and HZB deepen collaboration with strategic focus on digitalisation
    News
    08.10.2025
    Sasol and HZB deepen collaboration with strategic focus on digitalisation
    Sasol Research & Technology and Helmholtz Zentrum Berlin (HZB) are expanding their partnership into the realm of digitalisation, building on their joint efforts in the CARE-O-SENE project and an Industrial Fellowship launched earlier this year. This new initiative marks a significant step forward in leveraging digital technologies to accelerate catalyst innovation and deepen scientific collaboration.
  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.