Dynamic measurements in liquids now possible in the laboratory
The dashed black lines mark the first thin liquid 'sheet' in which the molecules are dissolved. There are two nozzles in the upper part and a collecting vessel in the lower part (left image). Transmission image of the flat jet (centre image). X-ray spectrum of the solution on the CCD detector (right image). © HZB
A team of researchers in Berlin has developed a laboratory spectrometer for analysing chemical processes in solution - with a time resolution of 500 ps. This is of interest not only for the study of molecular processes in biology, but also for the development of new catalyst materials. Until now, however, this usually required synchrotron radiation, which is only available at large, modern X-ray sources such as BESSY II. The process now works on a laboratory scale using a plasma light source.
"Our laboratory setup now makes this measurement method available to a wider community," says HZB physicist Dr. Ioanna Mantouvalou, who drove the development together with partners from the Technische Universität Berlin, the Max Born Institute, the Physikalisch-Technische Bundesanstalt and the company Nano Optics Berlin. "In a first step, the laboratory measurements can also more precisely define where further analyses at synchrotron sources are useful and promising. This allows us to make better use of scarce resources," says Mantouvalou.
Time-resolved soft X-ray spectroscopy provides access to the properties of organic materials and is therefore ideal for studying dynamic changes in the electronic structure of individual elements in disordered systems. However, measurements of liquid solutions in which these molecules or complexes are dissolved are particularly challenging. They require a high photon flux and extremely low noise. Therefore, these experiments require usually large-scale facilities such as modern synchrotron light sources.
In contrast, the new laboratory instrument uses light from a plasma created by the interaction of an intense laser pulse with metal. The new instrument provides a time resolution of 500 picoseconds and allows a very "stable" detection. "We were able to demonstrate this in our study using two examples in an aqueous solution. We analysed the metal complex compounds [Ni(CN)4]2- and [Fe(bpy)3]2+," says Richard Gnewkow, first author and PhD student in Mantouvalou's team.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=26806;sprache=en
- Copy link
-
Fascinating archaeological find becomes a source of knowledge
The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
-
Element cobalt exhibits surprising properties
The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
-
MXene for energy storage: More versatile than expected
MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.