Dynamische Messungen in Flüssigkeiten jetzt auch im Labor

Die gestrichelten Linien markieren das erste dünne Flüssigkeits-‚Blatt‘, in dem Moleküle gelöst sind. Im oberen Teil befinden sich zwei Düsen, im unteren Teil ein Auffangbehälter (Bild links). Das Bild in der Mitte zeigt die Transmission des Flachstrahls. Rechts ist das Spektrum der Probe auf dem CCD-Detektor zu sehen.

Die gestrichelten Linien markieren das erste dünne Flüssigkeits-‚Blatt‘, in dem Moleküle gelöst sind. Im oberen Teil befinden sich zwei Düsen, im unteren Teil ein Auffangbehälter (Bild links). Das Bild in der Mitte zeigt die Transmission des Flachstrahls. Rechts ist das Spektrum der Probe auf dem CCD-Detektor zu sehen. © HZB

Ein Team aus Berliner Forscher*innen hat ein Laborspektrometer entwickelt, um chemische Prozesse in Lösung zu analysieren – und das mit 500 ps Zeitauflösung. Dies ist nicht nur für die Forschung an molekularen Prozessen in der Biologie interessant, sondern auch für die Entwicklung von neuartigen Katalysatormaterialien. Bisher war dafür allerdings meist Synchrotronstrahlung erforderlich, wie sie nur an großen, modernen Röntgenquellen wie BESSY II zur Verfügung steht. Nun funktioniert das Verfahren mit einer Plasmalichtquelle im Labormaßstab.

„Durch unseren Laboraufbau wird diese Messmethode nun für eine breitere Community zugänglich“, sagt HZB-Physikerin Dr. Ioanna Mantouvalou, die die Entwicklung zusammen mit Partnern aus der Technischen Universität Berlin, dem Max-Born-Institut, der Physikalisch-Technischen Bundesanstalt sowie der Firma Nano Optics Berlin vorangetrieben hatte. „Die Labormessungen können in einem ersten Schritt auch genauer umgrenzen, wo weitere Analysen an Synchrotronquellen sinnvoll und vielversprechend sind. Dadurch werden knappe Ressourcen besser genutzt“, sagt Mantouvalou.

Zeitaufgelöste Röntgenspektroskopie im „weichen“ Energiebereich bietet Zugang zu Eigenschaften von organischen Materialien und ist damit ideal, um dynamische Veränderungen in der Elektronenstruktur einzelner Elemente in ungeordneten Systemen zu untersuchen. Messungen von flüssigen Lösungen, in denen diese Moleküle oder Komplexe gelöst sind, sind jedoch besonders anspruchsvoll. Sie erfordern einen hohen Photonenfluss und extrem geringes Rauschen. Daher sind diese Experimente meist auf Großgeräte wie moderne Synchrotronlichtquellen beschränkt.

Das neue Labormessgerät nutzt dagegen Licht eines Plasmas, welches durch die Interaktion von einem intensiven Laserpuls mit Metall entsteht. Das neue Instrument ermöglicht Zeitauflösungen von 500 Pikosekunden. Die neu entwickelte Detektionsmethode ermöglicht eine sehr „stabile“ Detektion. „Dies konnten wir in unserer Studie an zwei Beispielen in wässriger Lösung demonstrieren. Wir haben dafür die Metall-Komplexverbindungen [Ni(CN)4]2- und [Fe(bpy)3]2+ untersucht“, sagt Richard Gnewkow, Erstautor und Doktorand im Team von Mantouvalou.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.