New Method for Absorption Correction to Improve Dental Fillings

The micro-XRF composite image for the Ca (white/tooth), Yb (magenta/filling) and Zn (red/sealer) distribution in a treated human tooth shows Zn diffusion from the sealer material into the tooth.

The micro-XRF composite image for the Ca (white/tooth), Yb (magenta/filling) and Zn (red/sealer) distribution in a treated human tooth shows Zn diffusion from the sealer material into the tooth. © Leona Bauer (TU Berlin/HZB)

A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.

 

"We can now conduct more accurate measurements," says Ioanna Mantouvalou. "The absorption correction with micro-CT and XAS takes into account how strongly different materials absorb X-rays." This has been made possible through a combination of laboratory infrastructures at BAM (Federal Institute for Materials Research and Testing) and the HZB SyncLab laboratory in combination with the BESSY II synchrotron light source. BESSY II provided tunable X-rays over a wide energy range (200 eV to 32 keV) necessary for detailed compositional analysis. The micro-CT and confocal micro-XRF investigations were then facilitated using laboratory setups that utilize X-ray tubes as sources.

One of the materials investigated by Mantouvalou's team is dentin—a mineralized tissue that makes up most of the tooth, lies beneath the enamel, and plays a crucial role in transmitting sensations such as cold and heat. Its analysis is important for dentistry because, with dental fillings, elements often diffuse from the filling material into the dentin. "Our results enable detailed studies of such diffusion processes," says Leona Bauer, a doctoral student at HZB and TU Berlin and the study's first author. They are important for improving the durability and biocompatibility of dental fillings and reducing the risk of secondary caries and other dental problems.

In addition to investigating materials for dentistry, the method offers applications in other areas where precise 3D elemental distributions are required. These include the analysis of biological tissues, the investigation of catalyst materials, and the study of materials in environmental science. The versatility of the measurement method could thus have a positive impact on various research fields.

HS

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • Bernd Rech elected to the BR50 Board of Directors
    News
    30.01.2026
    Bernd Rech elected to the BR50 Board of Directors
    The Scientific Director at Helmholt-Zentrum Berlin is the new face behind the "Natural Sciences" unit at Berlin Research 50 (BR50). Following the election in December 2025, the constituent meeting of the new BR50 Board of Directors took place on 22 January 2026.

    Its members are Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (German Centre for Integration and Migration Research, DeZIM), Volker Haucke (Leibniz Research Institute for Molecular Pharmacology, FMP), Uta Bielfeldt (German Rheumatism Research Centre Berlin, DRFZ) and Bernd Rech (HZB).

  • A record year for our living lab for building-integrated PV
    News
    27.01.2026
    A record year for our living lab for building-integrated PV
    In 2025, our solar facade in Berlin-Adlershof generated more electricity than in any of the previous four years of operation.