Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen

Bestrahlungsplatz für die Augenbestrahlungen am HZB.

Bestrahlungsplatz für die Augenbestrahlungen am HZB. © HZB

Bestrahlungsplanung auf Basis von fusionierter multi-modaler Bildgebung mit Bildern durch Optische Kohärenztomographie, Ultraschall, Fotografie des Augenhintergrundes (Fundus), Computertomographie (CT) und Magnetresonanztomographie (MRT in T1 und T2-Gewichtung).

Bestrahlungsplanung auf Basis von fusionierter multi-modaler Bildgebung mit Bildern durch Optische Kohärenztomographie, Ultraschall, Fotografie des Augenhintergrundes (Fundus), Computertomographie (CT) und Magnetresonanztomographie (MRT in T1 und T2-Gewichtung). © HZB

Ein Team aus führenden Expertinnen und Experten aus Medizinphysik, Physik und Strahlentherapie, zu dem auch die HZB-Physikerin Prof. Andrea Denker und der Charité-Medizinphysiker Dr. Jens Heufelder gehören, hat einen Übersichtsartikel zur Protonentherapie von Augentumoren veröffentlicht. Der Beitrag ist im Red Journal, einem der renommiertesten Fachjournale in diesem Bereich erschienen. Er stellt die Besonderheiten dieser Therapieform am Auge vor, erläutert den Stand der Technik und aktuelle Forschungsschwerpunkte, gibt Empfehlungen zur Durchführung der Bestrahlungen und einen Ausblick auf künftige Entwicklungen.

Augentumore sind glücklicherweise recht selten. Während noch vor einigen Jahrzehnten die Behandlung in der Entfernung des Augapfels bestand, steht heute weltweit an einigen wenigen Standorten eine Alternative bereit, die in vielen Fällen neben einer erfolgreichen Behandlung des Tumors das Auge erhalten kann: Die Bestrahlung mit Protonen hat hohe Erfolgsaussichten. Dazu wurde bereits vor Jahrzehnten auf dem Campus Lise Meitner (am damaligen Hahn-Meitner-Institut) das dortige Zyklotron optimiert und ein Behandlungsplatz für die Protonentherapie von Augentumoren aufgebaut. An diesem Behandlungsplatz konnten in enger Kooperation mit der Charité – Universitätsmedizin Berlin in den letzten 25 Jahren bereits über 4700 Menschen erfolgreich behandelt werden.

Viele Verfahren, die im Überblicksbeitrag vorgestellt werden, gehören bei der Behandlung der Patienten am HZB seit Jahren zum klinischen Standard. Teilweise wurden sie sogar am HZB entwickelt und mit der Charité in die klinische Routine überführt. Dazu gehört zum Beispiel die auf multimodaler Bildgebung beruhende Bestrahlungsplanung auf Basis von Fotos vom Augenhintergrund, Computertomographie (CT) und Magentresonanztomographie (MRT). Das dazu nötige spezielle Bestrahlungsplanungssystem wurde am HZB in Kooperation mit dem Deutschen Krebsforschungszentrum (DKFZ) entwickelt.

Ein großes Problem dieser speziellen Form der Partikeltherapie liegt darin, dass viele Bestrahlungsplätze sogenannte In-house Lösungen mit hoher Laufzeit sind. Aufgrund der geringen Nachfrage und der Komplexität des Gebietes werden zurzeit von der Industrie keine dezidierten Behandlungsplätze für Augenbestrahlungen angeboten, sondern nur für Standardbestrahlungslösungen, z.B. an einer Gantry, die für eine Augenbestrahlung sub-optimal sind.

Das abschließende Fazit des Artikels lautet: „Mit einem durchdachten Ansatz können mit Protonen- und anderen Teilchenstrahlen hohe Tumorkontrollraten erzielt werden, mit dem Potenzial, das Auge und das Sehvermögen zu erhalten, das Kosten-Nutzen-Verhältnis bei der Behandlung von Augentumoren zu optimieren und somit die Lebensqualität der Patienten zu maximieren. Ein hoher Patientendurchsatz und eine enge Zusammenarbeit zwischen Ophthalmologie, Strahlentherapie und Medizinphysik sind entscheidend für eine erfolgreiche Partikeltherapie von Augentumoren.“

Die Particle Therapy Co-Operative Group (PTCOG) ist eine internationale wissenschaftliche Fachgesellschaft auf dem Gebiet der Protonen- bzw. Partikeltherapie. In ihr sind Forscherinnen und Forscher aus über 130 Partikeltherapiezentren organisiert. Prof. Andrea Denker ist dort Mitglied des Steering Committees, Dr. Jens Heufelder leitet als Co-Chair das Ocular Subcommittee.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.