Photovoltaic living lab reaches the 100 Megawatt-hour mark

Blick auf die Solarfassade des Reallabors.

Blick auf die Solarfassade des Reallabors. © HZB

About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

Solar facades offer untapped potential for generating clean electricity. How much they actually deliver and which environmental factors play a role are being studied at HZB's real laboratory. The facade elements installed there have now reached the 100-megawatt-hour mark.

This amount of energy is enough to supply a four-person household in Germany with clean electricity for 30 years. At HZB, the electricity generated by the laboratory’s solar facade is used entirely on-site, which makes the facility particularly economical. According to initial estimates, the additional costs compared to a conventional facade have amortized after 18 years.

What is the Living Lab?

It is a research building on the BESSY II location in Berlin-Adlershof equipped with a photovoltaic facade. A total of 360 frameless, blue-coated modules were installed on the south, west, and north facades of the building. Particular emphasis was placed on ensuring the solar facade elements are aesthetically pleasing.

The living laboratory is equipped with 120 measuring points and sensors for monitoring among others temperature, solar radiation and ventilation. This allows the behavior of the solar modules and the entire PV facade system to be evaluated under different seasonal and weather conditions over a long period.

Findings contribute to the building-integrated photovoltaics advisory service

These insights directly contribute to advisory services, benefiting society as a whole. HZB operates the independent advisory service for building-integrated photovoltaics (BAIP). Experts provide advice to architects, builders and urban planners on technologies, products, design options, technical feasibility, and legal frameworks.

 

sz

  • Copy link

You might also be interested in

  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
  • Berlin Science Award goes to Philipp Adelhelm
    News
    24.07.2025
    Berlin Science Award goes to Philipp Adelhelm
    Battery researcher Prof. Dr. Philipp Adelhelm has been awarded the 2024 Berlin Science Award. He is a professor at the Institute of Chemistry at Humboldt University in Berlin (HU) and heads a joint research group at HU and the Helmholtz Zentrum Berlin (HZB). The materials scientist and electrochemist is investigating sustainable batteries, which play a key role in the success of the energy transition. He is one of the leading international experts in the field of sodium-ion batteries.