Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren

<p class="x_MsoNormal">Die AEM Wasserelektrolyseur-Zelle arbeitet mit einer neu entwickelten Membranelektrodeneinheit (MEA), die mit einem schichtstrukturierten Nickel-basierten Anodenkatalysator direkt beschichtet ist. Seine molekulare Wirkungsweise wurde aufgekl&auml;rt, und die AEM-Zelle hat sich als nahezu ebenso leistungsstark wie eine konventionelle PEM-Zelle mit Iridium-Katalysator erwiesen.

Die AEM Wasserelektrolyseur-Zelle arbeitet mit einer neu entwickelten Membranelektrodeneinheit (MEA), die mit einem schichtstrukturierten Nickel-basierten Anodenkatalysator direkt beschichtet ist. Seine molekulare Wirkungsweise wurde aufgeklärt, und die AEM-Zelle hat sich als nahezu ebenso leistungsstark wie eine konventionelle PEM-Zelle mit Iridium-Katalysator erwiesen. © Flo Force Fotografie, Hahn-Schickard & IMTEK Universität Freiburg

<p class="x_MsoNormal">Die katalytisch inaktive alpha-Phase (links) wandelt sich durch einen Phasen&uuml;bergang zur hochaktiven gamma-Phase (rechts) um. Die chemischen Details dieses Phasen&uuml;bergangs konnte das Team mit R&ouml;ntgenexperimenten an der Endstation LIXEdrom des BESSY II sowie elektrochemischen und computergest&uuml;tzten Analysen im Detail aufkl&auml;ren.&nbsp;

Die katalytisch inaktive alpha-Phase (links) wandelt sich durch einen Phasenübergang zur hochaktiven gamma-Phase (rechts) um. Die chemischen Details dieses Phasenübergangs konnte das Team mit Röntgenexperimenten an der Endstation LIXEdrom des BESSY II sowie elektrochemischen und computergestützten Analysen im Detail aufklären.  © Hanna Trzesniowski

Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.

Wasserstoff soll im Energiesystem der Zukunft eine große Rolle spielen, als Energiespeicher, Brennstoff und wertvoller Rohstoff für die chemische Industrie. Denn Wasserstoff lässt sich nahezu klimaneutral durch Elektrolyse von Wasser erzeugen, sofern diese mit Strom aus erneuerbaren Quellen betrieben wird. Der Hochlauf der grünen Wasserstoffwirtschaft wird aktuell maßgeblich von zwei Systemen bestimmt: der protonenleitenden Membranelektrolyse (PEM) und der klassischen alkalischen Elektrolyse. AEM-Elektrolyseure kombinieren die Vorteile beider Systeme und benötigen beispielsweise keine seltenen Edelmetalle wie Iridium.

Alkalische Membran (AEM) Elektrolyseure ohne Iridium

Nun haben Forschungsteams aus TU Berlin und HZB gemeinsam mit dem Institut für Mikrosystemtechnik (IMTEK) der Uni Freiburg und Siemens Energy erstmals eine alkalische Membran-Elektrolyseurzelle im Labormaßstab vorgestellt, die eine hohe Effizienz bei der Produktion von Wasserstoff aufweist. Statt auf Iridium setzten sie auf Nickel-Doppelhydroxidverbindungen mit Eisen, Kobalt oder Mangan und entwickelten ein Verfahren, um eine alkalische Ionenaustauschmembran damit zu beschichten.

Einblick in molekulare Prozesse während der Elektrolyse an BESSY II

Während der Elektrolyse in der Zelle konnten sie operando-Messungen an der Berliner Röntgenquelle BESSY II durchführen. Ein Theorie-Team aus Singapur und den USA half dabei, die experimentellen Daten zu interpretieren. „Dadurch gelang es uns, die relevanten katalytisch-chemischen Prozesse an der katalysatorbeschichteten Membran zu verstehen und zu beschreiben, insbesondere den Phasenübergang von einer katalytisch inaktiven Alpha-Phase zur hochaktiven Gamma-Phase und die Rolle, welche die verschiedenen O-Liganden und Ni4+-Zentren bei der Katalyse spielen“, erklärt Prof. Peter Strasser, TU Berlin. „Erst diese Gamma-Phase kann unseren Katalysator konkurrenzfähig mit den aktuellen state-of-the-art Katalysatoren aus Iridium machen. Unsere Arbeit zeigt wichtige Gemeinsamkeiten zu Iridium im katalytischen Mechanismus, aber auch völlig überraschende molekulare Unterschiede."

Die Untersuchung hat damit unser Verständnis der fundamentalen Katalyse Mechanismen der neuen nickelbasierten Elektroden-Materialien signifikant erweitert. Außerdem verspricht das neu entwickelte Beschichtungsverfahren der Membranelektrode eine sehr gute Skalierbarkeit. Eine erste vollfunktionsfähigen Kleinzellen wurde am IMTEK bereits getestet. Damit legen die Arbeiten die Grundlage für eine weitergehende industrielle Evaluierung und demonstrieren, dass auch ein AEM-Wasserelektrolyseur hocheffizient sein kann.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.