Batterieforschung mit dem HZB-Röntgenmikroskop

Die Abbildung links zeigt die nanotomographischen Aufnahmen eines LRTMO-Teilchen vor dem ersten Ladezyklus (oben) und nach 10 Ladezyklen (unten). Rechts davon sind die entsprechenden Simulationen mit isolierten Poren (hellblau), deren Anzahl nach 10 Ladezyklen (rechts unten) steigt.

Die Abbildung links zeigt die nanotomographischen Aufnahmen eines LRTMO-Teilchen vor dem ersten Ladezyklus (oben) und nach 10 Ladezyklen (unten). Rechts davon sind die entsprechenden Simulationen mit isolierten Poren (hellblau), deren Anzahl nach 10 Ladezyklen (rechts unten) steigt. © HZB

Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

Lithium-Ionen-Akkus Batterien sollen mit Hilfe von neuen Materialien für die Kathoden noch leistungsstärker werden. So könnten geschichtete lithiumreiche Übergangsmetall-Kathoden (LRTMO) die Ladekapazität noch steigern und in Hochleistungs-Lithium-Akkus eingesetzt werden. Aber bisher ist zu beobachten, dass diese Kathodenmaterialien schnell „altern“: Durch das Hin- und Herwandern der Lithium-Ionen beim Aufladen und Entladen verändert sich das Kathodenmaterial. Welche Veränderungen dies konkret sind, war bislang unklar.

Teams aus chinesischen Forschungseinrichtungen hatten daher Messzeit am weltweit einzigartigen Transmissionsröntgenmikroskop (TXM) an einem Undulatorstrahlrohr am BESSY II Speicherring beantragt, um ihre Materialproben mit 3D-Tomographie und Nanospektroskopie zu untersuchen. Die Messungen am HZB-TXM führte damals, noch vor der Corona-Pandemie in 2019, Dr. Peter Guttmann, HZB, durch. Anschließend wurde die röntgenmikroskopische Analyse durch weitere spektro- und mikroskopische Untersuchungen ergänzt. Nach der aufwändigen Auswertung des reichhaltigen Datenmaterials liegen nun die Ergebnisse vor: Sie geben Auskunft über Veränderungen in Morphologie und Struktur des Materials aber auch zu chemischen Prozessen während des Entladens.

„Die Transmissions-Röntgenmikroskopie mit weicher Röntgenstrahlung ermöglicht es, chemische Zustände in LRTMO-Partikeln mit hoher räumlicher Auflösung dreidimensional zu visualisieren und Einblicke in chemische Reaktionen während des elektrochemischen Zyklus zu gewinnen“, erklärt Dr. Stephan Werner, der das Instrument wissenschaftlich betreut und weiterentwickelt.

So liefern die Ergebnisse Aussagen zu lokalen Gitterverzerrungen, die mit Phasenumwandlungen sowie der Bildung von Nanoporen verbunden sind. Auch die Oxidationszustände von einzelnen Elementen konnten lokal bestimmt werden. Die Geschwindigkeit der Ladeprozesse spielt dabei eine wichtige Rolle: Langsames Laden begünstigt Phasenumwandlungen und Sauerstoffverlust, während schnelles Laden zu Gitterverzerrung sowie inhomogener Lithiumdiffusion führt.

„Wir haben hier am TXM eine einzigartige Option: Wir können eine energieaufgelöste Transmissionsröntgentomografie anbieten“, sagt Werner. „Damit bekommen wir ein 3D-Abbild mit strukturellen Informationen zu jedem elementspezifischen Energielevel – d.h. die Energie ist hier die vierte Dimension.“

Die Erkenntnisse aus dieser Studie liefern wertvolle Informationen für die Entwicklung von Hochleistungskathoden, die langzeitstabil und zyklusfest bleiben. „Das TXM ist hervorragend darauf abgestimmt, um zukünftig durch in-operando Studien – also während des Auf- oder Entladens - neue Einsichten in morphologische, aber auch chemische Veränderungen in Batteriematerialien zu liefern“, sagt Prof. Gerd Schneider, der das TXM entwickelt hat.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.