Protons against cancer: New research beamline for innovative radiotherapies
Prof. Dr Judith Reindl and PhD student Aikaterini Rousseti (from left to right) from the University of the Bundeswehr Munich present the experimental station for biological samples which is installed at the new Minibee beamline at HZB. © Kevin Fuchs / HZB
Magnetic quadrupoles focus the proton beam in front of the experiment platform. © Kevin Fuchs / HZB
Together with the University of the Bundeswehr Munich, the HZB has set up a new beamline for preclinical research. It will enable experiments on biological samples on innovative radiation therapies with protons.
The proton accelerator at the Helmholtz-Zentrum Berlin (HZB) has been used for about 25 years to combat certain types of eye tumours. So far, over 4800 people have benefited from proton eye tumour therapy, which is carried out in collaboration with Charité – Universitätsmedizin Berlin.
Now, the proton accelerator at HZB also offers the option of conducting preclinical research: A mini-beamline for preclinical experiments (Minibee) has been set up for this purpose together with the University of the Bundeswehr in Munich. The HZB's Proton Therapy Department has built the beam guidance and control system for the minibeams. The University of the Bundeswehr in Munich, with Prof. Judith Reindl from the Institute of Applied Physics and Measurement Technology and the Section of Biomedical Radiation Physics, installed a platform for image-guided irradiation of biological samples. This will enable joint experiments on radiobiology and innovative radiation therapy in the future.
‘At Minibee, we can use medical research to investigate how changes in parameters and settings of the proton beam affect the treatment,’ says Judith Reindl. Among other things, Minibee is designed to generate ultrashort proton flashes (FLASH therapy) or needle-fine radiation (beamlets). ‘Our aim is to develop new methods that effectively destroy tumours while providing even better protection for healthy tissue,’ says Prof. Dr. Andrea Denker, head of the Department of Proton Therapy at HZB.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=28606;sprache=en
- Copy link
-
Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University).
-
Bright prospects for tin perovskite solar cells
Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.
-
Synchrotron radiation sources: toolboxes for quantum technologies
Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.