Protons against cancer: New research beamline for innovative radiotherapies

Prof. Dr Judith Reindl and PhD student Aikaterini Rousseti (from left to right) from the University of the Bundeswehr Munich present the experimental station for biological samples which is installed at the new Minibee beamline at HZB.

Prof. Dr Judith Reindl and PhD student Aikaterini Rousseti (from left to right) from the University of the Bundeswehr Munich present the experimental station for biological samples which is installed at the new Minibee beamline at HZB. © Kevin Fuchs / HZB

Magnetic quadrupoles focus the proton beam in front of the experiment platform.

Magnetic quadrupoles focus the proton beam in front of the experiment platform. © Kevin Fuchs / HZB

Together with the University of the Bundeswehr Munich, the HZB has set up a new beamline for preclinical research. It will enable experiments on biological samples on innovative radiation therapies with protons.

 

The proton accelerator at the Helmholtz-Zentrum Berlin (HZB) has been used for about 25 years to combat certain types of eye tumours. So far, over 4800 people have benefited from proton eye tumour therapy, which is carried out in collaboration with Charité – Universitätsmedizin Berlin.

Now, the proton accelerator at HZB also offers the option of conducting preclinical research: A mini-beamline for preclinical experiments (Minibee) has been set up for this purpose together with the University of the Bundeswehr in Munich. The HZB's Proton Therapy Department has built the beam guidance and control system for the minibeams. The University of the Bundeswehr in Munich, with Prof. Judith Reindl from the Institute of Applied Physics and Measurement Technology and the Section of Biomedical Radiation Physics, installed a platform for image-guided irradiation of biological samples. This will enable joint experiments on radiobiology and innovative radiation therapy in the future.

‘At Minibee, we can use medical research to investigate how changes in parameters and settings of the proton beam affect the treatment,’ says Judith Reindl. Among other things, Minibee is designed to generate ultrashort proton flashes (FLASH therapy) or needle-fine radiation (beamlets). ‘Our aim is to develop new methods that effectively destroy tumours while providing even better protection for healthy tissue,’ says Prof. Dr. Andrea Denker, head of the Department of Proton Therapy at HZB.

arö

  • Copy link

You might also be interested in

  • AI re-examines dinosaur footprints
    Science Highlight
    27.01.2026
    AI re-examines dinosaur footprints
    For decades, paleontologists have pondered over mysterious three-toed dinosaur footprints. Were they left by fierce carnivores, gentle plant-eaters, or even early birds? Now, an international team has used artificial intelligence to tackle the problem—creating a free app that readily lets anyone decipher the past.
  • HZB expert appointed chair of the Scientific Advisory Board of the Barcelona Research Centre
    News
    27.01.2026
    HZB expert appointed chair of the Scientific Advisory Board of the Barcelona Research Centre
    Prof. Dr. Susan Schorr has been appointed to the newly established Scientific Advisory Board of the Barcelona Research Centre in Multiscale Science and Engineering and elected as its chair.
  • Compact electron accelerator for treating PFAS-contaminated water
    Science Highlight
    19.01.2026
    Compact electron accelerator for treating PFAS-contaminated water
    So-called forever chemicals or PFAS compounds are a growing environmental problem. An innovative approach to treating PFAS-contaminated water and soil now comes from accelerator physics: high-energy electrons can break down PFAS molecules into harmless components through a process called radiolysis. A recent study published in PLOS One shows that an accelerator developed at HZB, based on a SRF photoinjector, can provide the necessary electron beam.