Largest magnetic anisotropy of a molecule measured at BESSY II
THz-EPR setup in the experimental hall of BESSY II. © HZB
The magnetic properties of the investigated bismuth complex (center) were investigated using THz-EPR spectroscopy at BESSY II. The method uses electromagnetic radiation from the THz to the infrared range in combination with high magnetic fields. © HZB
At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
The research involved a bismuth complex synthesized in the group of Josep Cornella (MPI KOFO). This molecule has unique magnetic properties that a team led by Frank Neese (MPI KOFO) recently predicted in theoretical studies. So far, however, all attempts to measure the magnetic properties of the bismuth complex and thus experimentally confirm the theoretical predictions have failed.
This important step has now been achieved by using THz electron paramagnetic resonance spectroscopy (THz-EPR) at the synchrotron radiation source BESSY II, which is operated by the HZB in Berlin.
“The results show in a fascinating way that our method can be used to determine extremely high values of the magnetic anisotropy with high accuracy. Through our cooperation with scientists from fundamental research, we are thereby making a great step forward in the understanding of this class of materials,” says Tarek Al Said (HZB), first author of the study, which was recently published in the renowned Journal of the American Chemical Society.
red./arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=28886;sprache=en
- Copy link
-
5000th patient treated with protons for eye tumours
For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
-
Iridium-free catalysts for acid water electrolysis investigated
Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
-
MXene as a frame for 2D water films shows new properties
An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.