Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

Blick auf den THz-EPR-Experimentierplatz in der Halle der Synchrotronquelle BESSY II.

Blick auf den THz-EPR-Experimentierplatz in der Halle der Synchrotronquelle BESSY II. © HZB

Die magnetischen Eigenschaften des untersuchten Bismut-Komplexes (Mitte) konnten mit der THz-EPR-Spektroskopie bei BESSY II aufgeklärt werden. Bei der Methode kommen elektromagnetische Strahlung im THz bis Infrarot-Bereich sowie hohe Magnetfelder zum Einsatz.

Die magnetischen Eigenschaften des untersuchten Bismut-Komplexes (Mitte) konnten mit der THz-EPR-Spektroskopie bei BESSY II aufgeklärt werden. Bei der Methode kommen elektromagnetische Strahlung im THz bis Infrarot-Bereich sowie hohe Magnetfelder zum Einsatz. © HZB

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.

Untersucht wurde ein Bismut-Komplex, welches in der Gruppe von Josep Cornella (MPI KOFO) synthetisiert wurde. Dieses Molekül besitzt einzigartige magnetische Eigenschaften, die ein Team um Frank Neese (MPI KOFO) vor kurzem mit theoretischen Studien vorhergesagt hat. Bisher schlugen jedoch alle Versuche fehl, die magnetischen Eigenschaften des Bismut-Komplexes zu messen und damit die theoretischen Vorhersagen experimentell zu bestätigen.

THz-EPR an BESSY II

Dieser wichtige Schritt gelang nun durch eine spezielle Methode an der Synchrotronstrahlungsquelle BESSY II, die das HZB in Berlin betreibt. Die Forschenden setzten auf die THz-Elektronenparamagnetische Resonanz-Spektroskopie (THz-EPR). „Die Ergebnisse zeigen auf faszinierende Weise, dass wir mit unserer Methode extrem hohe Werte für die magnetische Anisotropie sehr genau bestimmen können. Durch die Zusammenarbeit mit Forschenden aus den Grundlagenwissenschaften erzielen wir damit einen großen Fortschritt für das Verständnis dieser Materialklasse“, sagt Tarek Al Said (HZB), der Erstautor der Studie, die kürzlich in der renommierten Fachzeitschrift Journal of the American Chemical Society publiziert wurde.

red./arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.
  • 10 Millionen Euro Förderung für UNITE – Startup Factory Berlin-Brandenburg
    Nachricht
    16.07.2025
    10 Millionen Euro Förderung für UNITE – Startup Factory Berlin-Brandenburg
    Die UNITE – Startup Factory Berlin-Brandenburg wird vom Bundesministerium für Wirtschaft und Energie als eines von zehn bundesweiten Leuchtturmprojekten für wissenschaftsbasierte Gründungen ausgezeichnet. UNITE soll als zentrale Transfer-Plattform für technologiegetriebene Ausgründungen aus der Wissenschaft und Industrie in der Hauptstadtregion etabliert werden. Auch das Helmholtz-Zentrum Berlin wird davon profitieren.