Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
Blick auf den THz-EPR-Experimentierplatz in der Halle der Synchrotronquelle BESSY II. © HZB
Die magnetischen Eigenschaften des untersuchten Bismut-Komplexes (Mitte) konnten mit der THz-EPR-Spektroskopie bei BESSY II aufgeklärt werden. Bei der Methode kommen elektromagnetische Strahlung im THz bis Infrarot-Bereich sowie hohe Magnetfelder zum Einsatz. © HZB
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
Untersucht wurde ein Bismut-Komplex, welches in der Gruppe von Josep Cornella (MPI KOFO) synthetisiert wurde. Dieses Molekül besitzt einzigartige magnetische Eigenschaften, die ein Team um Frank Neese (MPI KOFO) vor kurzem mit theoretischen Studien vorhergesagt hat. Bisher schlugen jedoch alle Versuche fehl, die magnetischen Eigenschaften des Bismut-Komplexes zu messen und damit die theoretischen Vorhersagen experimentell zu bestätigen.
THz-EPR an BESSY II
Dieser wichtige Schritt gelang nun durch eine spezielle Methode an der Synchrotronstrahlungsquelle BESSY II, die das HZB in Berlin betreibt. Die Forschenden setzten auf die THz-Elektronenparamagnetische Resonanz-Spektroskopie (THz-EPR). „Die Ergebnisse zeigen auf faszinierende Weise, dass wir mit unserer Methode extrem hohe Werte für die magnetische Anisotropie sehr genau bestimmen können. Durch die Zusammenarbeit mit Forschenden aus den Grundlagenwissenschaften erzielen wir damit einen großen Fortschritt für das Verständnis dieser Materialklasse“, sagt Tarek Al Said (HZB), der Erstautor der Studie, die kürzlich in der renommierten Fachzeitschrift Journal of the American Chemical Society publiziert wurde.
red./arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=28886;sprache=de
- Link kopieren
-
Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?
Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.
-
Susanne Nies in EU-Beratergruppe zu Green Deal berufen
Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
-
Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.