Nanoinseln auf Silizium mit schaltbaren topologischen Texturen

Künstlerische Darstellung des zentrierten, nach unten konvergierenden Polarisationsfeldes. Es resultiert aus der Kompression des Polarisationsflusses durch die Seitenwände der Nanoinseln, die sich nach unten zusammenziehen. Die Textur ähnelt einem Flüssigkeitsstrudel, der in einen Trichter fließt.

Künstlerische Darstellung des zentrierten, nach unten konvergierenden Polarisationsfeldes. Es resultiert aus der Kompression des Polarisationsflusses durch die Seitenwände der Nanoinseln, die sich nach unten zusammenziehen. Die Textur ähnelt einem Flüssigkeitsstrudel, der in einen Trichter fließt. © Laura Canil /HZB

Jede Reihe in der Tabelle entspricht einer bestimmten Orientierung der Probe. Die Spalten zeigen die Topographie (links) und die Piezoresponse-Kraftmikroskopie (PFM)-Bilder. In der lateralen PFM-Amplitude zeigen die Nanoinseln ein Muster aus dunklen und hellen Bereichen, das an Kaffeebohnen erinnert und typisch für Texturen mit zentrierter polarer Verteilung ist.

Jede Reihe in der Tabelle entspricht einer bestimmten Orientierung der Probe. Die Spalten zeigen die Topographie (links) und die Piezoresponse-Kraftmikroskopie (PFM)-Bilder. In der lateralen PFM-Amplitude zeigen die Nanoinseln ein Muster aus dunklen und hellen Bereichen, das an Kaffeebohnen erinnert und typisch für Texturen mit zentrierter polarer Verteilung ist. © HZB

Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.

Ferroelektrika im Nanomaßstab weisen eine Fülle an polaren und manchmal wirbelnden (chiralen) elektromagnetischen Texturen auf. Diese Texturen sind physikalisch faszinierend, versprechen aber auch eine Reihe von Anwendungen, ob in der Nanoelektronik oder in künftigen Informationstechnologien: Zum Beispiel als ultrakompakte Datenspeicher oder extrem energieeffiziente Feldeffekttransistoren. Ein Knackpunkt ist jedoch ihre Stabilität und die Frage, ob es möglich ist, diese Texturen durch einen externen elektrischen oder optischen Reiz zu kontrollieren.

Neue Perspektiven

Ein Team um Prof. Catherine Dubourdieu (HZB und FU Berlin) hat nun in Nature Communications eine Arbeit veröffentlicht, die neue Perspektiven eröffnet. In Zusammenarbeit mit Teams aus CEMES-CNRS in Toulouse, der Universität Picardie in Amiens und dem Jozef-Stefan-Institut in Ljubljana hat die Gruppe um Dubourdieu eine besonders interessante Klasse von Nanoinseln auf Silizium untersucht und gezeigt, dass hier die Manipulation gelingen kann.

Nanoinseln auf Silizium

„Wir haben BaTiO3-Nanostrukturen hergestellt, die winzige Inseln auf einem Siliziumsubstrat bilden“, erklärt Dubourdieu. Die Nanoinseln haben eine trapezförmige Form mit Abmessungen von 30–60 nm (unten 30 nm, oben 60 nm) und weisen stabile Polarisationsdomänen auf. „Durch Feinjustierung bei der Siliziumwafer-Passivierung konnten wir die Keimbildung dieser Nanoinseln induzieren“, sagt Dong-Jik Kim, der in Dubourdieus Team forscht.

Domänen mit PFM untersucht

Die Domänenmuster wurden mit der Methode der Piezoresponse-Kraftmikroskopie (PFM) untersucht. „Sowohl die PFM-Messdaten als auch die Phasenfeldmodellierung deuten auf eine zentrierte, nach unten konvergente Polarisation hin, was perfekt mit den Informationen übereinstimmt, die wir unter dem Rastertransmissions-Elektronenmikroskop gewonnen haben“, sagt Doktorand Ibukun Olaniyan.

Reversibles Schalten möglich!

Insbesondere konnten sie eine wirbelnde Komponente um die Achse der Nanoinsel erkennen, die die Chiralität verursacht. „Die Textur ähnelt einem Flüssigkeitsstrudel, der in einen Trichter fließt“, erklärt Dubourdieu. „Die nach unten konvergierenden Nanodomänen im Zentrum können durch ein externes elektrisches Feld reversibel in nach oben divergierende Nanodomänen im Zentrum umgeschaltet werden“, betont sie.

„In dieser Arbeit haben wir gezeigt, dass chirale topologische Texturen durch geeignete Nanostrukturen stabilisiert werden können“, sagt Dubourdieu. Die Möglichkeit, in BaTiO3-Nanostrukturen chirale, wirbelnde, polare Texturen zu erzeugen und elektrisch zu manipulieren, ist für zukünftige Anwendungen sehr vielversprechend.

Hinweis: Diese Arbeit wurde teilweise durch den ERC Advanced Grant LUCIOLE (101098216) unterstützt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 20 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.