Neues Material für die effiziente Trennung von Deuterium bei erhöhter Temperatur

Die Kristallstruktur von Cu-ZIF-gis zeigt zylindrische gerade Kan&auml;le entlang der c-Achse. (Cu, orange; N, blau; C, grau; O, magenta; H, wei&szlig;).</p>
<p class="x_MsoNormal">

Die Kristallstruktur von Cu-ZIF-gis zeigt zylindrische gerade Kanäle entlang der c-Achse. (Cu, orange; N, blau; C, grau; O, magenta; H, weiß).

© Minji Jung / Department of Chemistry, UNIST

Ein neuartiges poröses Material kann Deuterium bei einer Temperatur von 120 K von Wasserstoff trennen. Dabei übersteigt diese Temperatur den Verflüssigungspunkt von Erdgas deutlich, was großtechnische Anwendungen erleichtert, zum Beispiel für die wirtschaftliche Produktion von Deuterium über die Infrastruktur von Pipelines für Flüssigerdgas (LNG). An der Forschungsarbeit sind Teams aus dem Ulsan National Institute of Science & Technology (UNIST), Korea, dem Helmholtz-Zentrum Berlin, dem Heinz Maier Leibnitz Zentrum (MLZ) und der Soongsil University, Korea, beteiligt.

Deuterium (D2), ein stabiles Isotop des Wasserstoffs, spielt eine entscheidende Rolle bei der Verbesserung der Haltbarkeit und Lichtausbeute von Halbleitern und Anzeigegeräten. Die steigende Nachfrage nach D2 stellt jedoch eine Herausforderung für die Produktion dar, vor allem aufgrund der Notwendigkeit, es durch einen kryogenen Destillationsprozess bei Temperaturen von bis zu 20 K vom Wasserstoff zu trennen. Obwohl die Verwendung von metallorganischen Gerüstverbindungen (metal-organic frameworks, MOFs) für die D2-Trennung erforscht wurde, nimmt ihre Effizienz bei höheren Temperaturen erheblich ab.

Zeolith-Gerüst

In dieser Studie stellte das Forschungsteam ein kupferbasiertes Zeolith-Imidazolat-Gerüst (Cu-ZIF-gis) vor, das selbst bei 120 K eine außergewöhnliche D2-Trennleistung aufweist. Während typische MOFs bei etwa 23 K effektiv arbeiten, nimmt ihre Leistung stark ab, wenn sich die Temperaturen 77 K nähern. Das neu entwickelte Kupfer-basierte MOF weist jedoch einen erheblichen Vorteil bei der Aufrechterhaltung seiner Wirksamkeit bei höheren Temperaturen auf.

Gitter dehnt sich aus

So stellte das Team fest, dass die überlegene Leistung dieses Materials auf die erhöhte Ausdehnung seines Gitters bei steigender Temperatur zurückzuführen ist. Bei kryogenen Temperaturen sind die Poren des entwickelten MOF kleiner als H2-Moleküle, wodurch deren Durchgang verhindert wird. Mit steigender Temperatur dehnt sich das Gitter jedoch aus, was zu einer Vergrößerung der Poren führt. Diese Vergrößerung erleichtert den Durchgang von Gasen durch die Poren und ermöglicht so die Trennung von H2 und D2 durch den Quantensiebeffekt, bei dem schwerere Moleküle die Poren bei niedrigeren Temperaturen effizienter durchqueren.

Experimente in Grenoble

In-situ-Röntgenbeugungs- (XRD) und quasi-elastische Neutronenstreuexperimente (QENS), die am Institut Laue-Langevin (ILL) in Grenoble, Frankreich, von einem gemeinsamen Team von UNIST, HZB und MLZ durchgeführt wurden, bestätigten die Ausdehnung des Gittergerüsts mit steigender Temperatur sowie den Unterschied in der Isotopendiffusionsfähigkeit auch bei erhöhten Temperaturen. Darüber hinaus deutete die Analyse der Thermodesorptionsspektroskopie (TDS)-Experimente auf eine stabile D2-Trennung bei erhöhten Temperaturen hin.

Höhere Effizienz beim Trennen von Isotopen

Professor Oh bemerkte: „Das untersuchte Material weist im Vergleich zu den meisten herkömmlichen Methoden, die bei extrem niedrigen Temperaturen arbeiten, einen deutlich geringeren Energieverbrauch und eine verbesserte Trenneffizienz auf.“ Dr. Jitae Park fügte hinzu: „Diese Erkenntnisse können zur Entwicklung nachhaltiger Isotopentrenntechnologien unter Verwendung der vorhandenen kryogenen LNG-Infrastruktur genutzt werden, was die potenzielle industrielle Bedeutung unterstreicht.“

Resultate aus Neutronenstreuung

Dr. Margarita Russina hob die entscheidende Rolle von QENS in dieser Studie hervor und erklärte: „Mit QENS können wir die molekulare Bewegung von H2 und D2 in MOFs direkt untersuchen und so wichtige Erkenntnisse über ihr Diffusionsverhalten und ihre Wechselwirkungen mit porösen Materialien gewinnen. Die beobachtete stärkere Einschließung von D2 im Vergleich zu H₂, ein rein nanoskaliges Phänomen, führt zu bemerkenswerten Auswirkungen auf die makroskopischen Eigenschaften und bildet die Grundlage für die Entwicklung einer neuen Generation von Materialien für eine effizientere Isotopentrennung.“

Kooperation zwischen Teams aus Korea und Deutschland

Das Forschungsteam, das gemeinsam von Professor Hyunchul Oh vom Department of Chemistry der UNIST, Professor Jaheon Kim von der Soongsil University, Dr. Jitae Park vom Heinz Maier Leibnitz Zentrum (MLZ) der Technischen Universität München (TUM) und Dr. Margarita Russina vom Helmholtz-Zentrum Berlin geleitet wird, gab diesen Fortschritt am 19. März 2025 bekannt. An der Studie waren auch Minji Jung, Jaewoo Park und Raeesh Muhammad vom Fachbereich Chemie der UNIST beteiligt, die als Ko-Erstautoren fungierten. Die Arbeit ist in Nature communications veröffentlicht.

Diese Studie wurde von der National Research Foundation (NRF) of Korea und dem Ministry of Science and ICT (MSIT) sowie dem Institut Laue-Langevin (ILL) in Grenoble, Frankreich, durch die Bereitstellung von Strahlzeit unterstützt.

UNIST /red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.