Georg Forster Research Fellow explores photocatalysts

Dr. Moses Alfred Oladele is working on photocatalysis for CO<sub>2</sub> conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist comes with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation.

Dr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist comes with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation. © HZB

Dr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist from Redeemer's University in Ede, Nigeria, came to Berlin in the summer of 2024 with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation and will work at HZB for two years.

Dr Moses Alfred Oladele studied Industrial Chemistry in Adekunle Ajasin University Akungba-Akoko (BSc), and continued his studies for the Master’s degree in Redeemer’s University in Ede, Osun State, Nigeria, where he also obtained his doctorate in 2021. He has since worked as a lecturer at Redeemer's University and as a scientist at the African Centre for Environmental and Water Research (ACE WATER), developing low-cost materials for environmental remediation of toxic wastes in water and monitoring pollutants in South West Nigeria.

In Matt Mayer's group, he will focus on researching new low-cost catalyst materials that can be activated by sunlight and used to convert CO2 into valuable chemicals with a net zero carbon footprint.

arö

  • Copy link

You might also be interested in

  • Scrolls from Buddhist shrine virtually unrolled at BESSY II
    Science Highlight
    23.07.2025
    Scrolls from Buddhist shrine virtually unrolled at BESSY II
    The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.
  • Long-term test shows: Efficiency of perovskite cells varies with the season
    Science Highlight
    21.07.2025
    Long-term test shows: Efficiency of perovskite cells varies with the season
    Scientists at HZB run a long-term experiment on the roof of a building at the Adlershof campus. They expose a wide variety of solar cells to the weather conditions, recording their performance over a period of years. These include perovskite solar cells, a new photovoltaic material offering high efficiency and low manufacturing costs. Dr Carolin Ulbrich and Dr Mark Khenkin evaluated four years of data and presented their findings in Advanced Energy Materials. This is the longest series of measurements on perovskite cells in outdoor use to date. The scientists found that standard perovskite solar cells perform very well during the summer months, even over several years, but decline in efficiency during the darker months.
  • Sodium-ion batteries: New storage mechanism for cathode materials
    Science Highlight
    18.07.2025
    Sodium-ion batteries: New storage mechanism for cathode materials
    Li-ion and Na-ion batteries operate through a process called intercalation, where ions are stored and exchanged between two chemically different electrodes. In contrast, co-intercalation, a process in which both ions and solvent molecules are stored simultaneously, has traditionally been considered undesirable due to its tendency to cause rapid battery failure. Against this traditional view, an international research team led by Philipp Adelhelm has now demonstrated that co-intercalation can be a reversible and fast process for cathode materials in Na-ion batteries. The approach of jointly storing ions and solvents in cathode materials provides a new handle for designing batteries with high efficiency and fast charging capabilities. The results are published in Nature Materials.