Georg Forster Research Fellow explores photocatalysts

Dr. Moses Alfred Oladele is working on photocatalysis for CO<sub>2</sub> conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist comes with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation.

Dr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist comes with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation. © HZB

Dr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist from Redeemer's University in Ede, Nigeria, came to Berlin in the summer of 2024 with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation and will work at HZB for two years.

Dr Moses Alfred Oladele studied Industrial Chemistry in Adekunle Ajasin University Akungba-Akoko (BSc), and continued his studies for the Master’s degree in Redeemer’s University in Ede, Osun State, Nigeria, where he also obtained his doctorate in 2021. He has since worked as a lecturer at Redeemer's University and as a scientist at the African Centre for Environmental and Water Research (ACE WATER), developing low-cost materials for environmental remediation of toxic wastes in water and monitoring pollutants in South West Nigeria.

In Matt Mayer's group, he will focus on researching new low-cost catalyst materials that can be activated by sunlight and used to convert CO2 into valuable chemicals with a net zero carbon footprint.

arö

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • AI re-examines dinosaur footprints
    Science Highlight
    27.01.2026
    AI re-examines dinosaur footprints
    For decades, paleontologists have pondered over mysterious three-toed dinosaur footprints. Were they left by fierce carnivores, gentle plant-eaters, or even early birds? Now, an international team has used artificial intelligence to tackle the problem—creating a free app that readily lets anyone decipher the past.
  • HZB expert appointed chair of the Scientific Advisory Board of the Barcelona Research Centre
    News
    27.01.2026
    HZB expert appointed chair of the Scientific Advisory Board of the Barcelona Research Centre
    Prof. Dr. Susan Schorr has been appointed to the newly established Scientific Advisory Board of the Barcelona Research Centre in Multiscale Science and Engineering and elected as its chair.