Georg-Forster-Forschungsstipendiat untersucht Photokatalysatoren

Dr. Moses Alfred Oladele untersucht in einem gemeinsamen Projekt mit der Gruppe von Dr. Matt Mayer, HZB, und Prof. Andreas Taubert, Universit&auml;t Potsdam, die photokatalytische Umwandlung von CO<sub>2</sub>. Der Chemiker wird mit einem Georg-Forster-Forschungsstipendium der Alexander von Humboldt-Stiftung gef&ouml;rdert.

Dr. Moses Alfred Oladele untersucht in einem gemeinsamen Projekt mit der Gruppe von Dr. Matt Mayer, HZB, und Prof. Andreas Taubert, Universität Potsdam, die photokatalytische Umwandlung von CO2. Der Chemiker wird mit einem Georg-Forster-Forschungsstipendium der Alexander von Humboldt-Stiftung gefördert. © HZB

Dr. Moses Alfred Oladele arbeitet in einem gemeinsamen Projekt mit der Gruppe von Dr. Matt Mayer, HZB, und Prof. Andreas Taubert, Universität Potsdam, an innovativen Photokatalysatoren zur Umwandlung von CO2 mit Licht. Der Chemiker von der Redeemer‘s University in Nigeria, kam mit einem Georg-Forster-Forschungsstipendium der Alexander von Humboldt-Stiftung nach Berlin und wird zwei Jahre am HZB forschen.

Dr. Moses Alfred Oladele studierte Industriechemie, an der Adekunle Ajasin University in Akungba-Akoko (BSc) und für den Master-Abschluss an der Redeemer's University in Ede, Osun State, Nigeria, wo er 2021 auch promovierte. Seitdem arbeitet er als Dozent an der Redeemer's University und forscht am African Centre for Environmental and Water Research (ACE WATER). Dabei untersuchte er kostengünstige Materialien für die Sanierung von Gewässern, die mit Schadstoffen belastet sind, oder entwickelte Verfahren für das Umweltmonitoring im Südwesten Nigerias.

In der Gruppe von Matt Mayer forscht er an innovativen und kostengünstigen Katalysatormaterialien, die durch Sonnenlicht aktiviert werden können. Mit Hilfe solcher Katalysatoren kann CO2 in wertvolle Chemikalien umgewandelt werden, mit einem Netto-CO2-Fußabdruck von Null.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.