An elegant method for the detection of single spins using photovoltage

The green laser excites charge carriers in the NV centres, which are then captured by surface states. The scanning tip moves over the surface and measures a potential difference around a NV centre. The spin states of the NV centres can be manipulated using microwaves.

The green laser excites charge carriers in the NV centres, which are then captured by surface states. The scanning tip moves over the surface and measures a potential difference around a NV centre. The spin states of the NV centres can be manipulated using microwaves. © Martin Künsting / HZB

Diamonds with certain optically active defects can be used as highly sensitive sensors or qubits for quantum computers, where the quantum information is stored in the electron spin state of these colour centres. However, the spin states have to be read out optically, which is often experimentally complex. Now, a team at HZB has developed an elegant method using a photo voltage to detect the individual and local spin states of these defects. This could lead to a much more compact design of quantum sensors.

Defects in solids are often undesirable, but they can also provide wonderful new opportunities, for example in diamonds: Here, nitrogen vacancy centres (NV centres) can be introduced whose spin states can be manipulated with microwaves. The information from a single spin can then be read out using light. This makes NV-doped diamonds suitable not only as highly sensitive sensors, but also as qubits for quantum computers.

Up to now: optical detection

However, to determine the state of each individual spin, the photons emitted from the colour centre (carrying the spin) must be measured. Since only single photons are emitted when spins flip, this signal is very weak, leading to a complex experimental set-up for the detection.

Now: photovoltage measured by KPFM

A team at HZB has now presented a novel method to solve this problem. ‘The idea was that such defect centres not only possess a spin state, but also electrical charge,’ says Dr Boris Naydenov. To probe these charges, they modified a variant of atomic force microscopy known as Kelvin probe force microscopy (KPFM): in this process, a laser excites the NV centres, generating free charge carriers that are captured by surface states and thus produce a measurable voltage around an NV centre.

Capturing spin dynamics

‘The photovoltage depends on the electron spin state of the NV centre, and so we can actually read out the individual spin,' says Sergei Trofimov, who carried out the measurements as part of his PhD project. Moreover, with the new method, it is even possible to capture the spin dynamics by coherently manipulating the spin states using microwave excitation.

Outlook: tiny diamond based devices

‘This would open the way to the development of really tiny and compact diamond-based devices, since all that is needed are suitable contacts instead of complex microscopic optics and single-photon detectors,’ says Prof. Klaus Lips, head of the Spins in Energy Conversion and Quantum Information Science department. ‘The newly developed readout method could also be used in other solid-state physics systems where electron spin resonance of spin defects has been observed,’ Lips estimates.

arö

  • Copy link

You might also be interested in

  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.