Green hydrogen: A cage structured material transforms into a performant catalyst

The illustration shows schematically how nanothin sheets of nickel compounds are released from the clathrate structure, providing an extremely large surface area for the oxygen evolution reaction. 

The illustration shows schematically how nanothin sheets of nickel compounds are released from the clathrate structure, providing an extremely large surface area for the oxygen evolution reaction.  © Hongyuan Yang/HZB/TUB

Ba<sub>8</sub>Ni<sub>6</sub>Ge<sub>40</sub> consists of polyhedral cages made of nickel (gray) and germanium (purple), each containing a barium atom.

Ba8Ni6Ge40 consists of polyhedral cages made of nickel (gray) and germanium (purple), each containing a barium atom. © Hongyuan Yang/HZB/TUB

Investigations under the transmission electron microscope of the Ba<sub>8</sub>Ni<sub>6</sub>Ge<sub>40</sub> after 24 h as an OER catalyst show that the material has changed into a spongy Nickel network with a high surface area. The elemental analysis reveals that nearly all Germanium and Barium atoms have been washed out during this transformation.</p>
<p>&nbsp;

Investigations under the transmission electron microscope of the Ba8Ni6Ge40 after 24 h as an OER catalyst show that the material has changed into a spongy Nickel network with a high surface area. The elemental analysis reveals that nearly all Germanium and Barium atoms have been washed out during this transformation.

  © 10.1002/anie.202424743

Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.

Hydrogen can be produced by electrolysis of water. If the electrical energy required for this process comes from renewable sources, this hydrogen is even carbon neutral. This 'green' hydrogen is seen as an important building block for the energy system of the future and is also needed in large quantities as a raw material for the chemical industry. Two reactions are crucial in electrolysis: hydrogen evolution at the cathode and oxygen evolution at the anode (OER). However, the oxygen evolution reaction in particular slows down the desired process. To speed up hydrogen production, more efficient and robust catalysts for the OER process need to be developed.

Clathrates, a structure build of cages

Currently, nickel-based compounds are considered to be good and inexpensive catalysts for the alkaline oxygen evolution reaction. This is where Dr. Prashanth Menezes and his team come in. ‘The contact between the active nickel centres and the electrolyte plays a crucial role in the efficiency of a catalyst,' says the chemist. In conventional nickel compounds, this surface area is limited. ‘We therefore wanted to test whether nickel-containing samples from the fascinating class of materials known as clathrates could be used as catalysts'.

The materials are made of Ba8Ni6Ge40 and were produced at the Technical University of Munich. Like all clathrates, they are characterised by a complex crystalline structure of polyhedral cages, in this case, formed by germanium and nickel, enclosing barium. This structure gives clathrates special properties that make them interesting as thermoelectrics, superconductors or battery electrodes. However, until now, no research group had considered of investigating clathrates as electrocatalysts.

Experiments at universities and BESSY II

The electrochemical measurements showed that the Ba₈Ni₆Ge₄₀ as a catalyst exceeded the efficiency of nickel based catalysts at a current density of 550 mA cm⁻², a value also used in industrial electrolysis. The stability was also remarkably high: even after 10 days of continuous operation, the activity did not decrease significantly.

The team used a combination of experiments to find out why the material is so remarkably well suited. At BESSY II, they studied the samples using in situ X-ray absorption spectroscopy (XAS), while basic structural characterisation were carried out at the Freie and Technische Universität Berlin.

From cage to sponge

Their analysis showed that the Ba8Ni6Ge40 particles in the aqueous electrolyte undergo a structural transformation under an electric field: germanium and barium atoms dissolve out of the former three-dimensional framework. ‘The germanium and barium atoms make up almost 90 % of the clathrate starting material and they are completely washed out, leaving behind highly porous, sponge-like nanolayers of the remaining 10 % nickel that offer a maximum surface area,‘ says Dr. Niklas Hausmann from Menezes’ team. This transformation brings more and more catalytically active nickel centres into contact with the electrolyte.

‘We were actually surprised by how well these samples work as OER catalysts. We expect that we can observe similar results with other transition metal clathrates and that we have discovered a very interesting class of materials for electrocatalysts,’ says Menezes.

arö

  • Copy link

You might also be interested in

  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
  • Perovskite solar cells from Germany are competing with China's PV technology - HZB 2025 Technology Transfer Award
    News
    15.10.2025
    Perovskite solar cells from Germany are competing with China's PV technology - HZB 2025 Technology Transfer Award
    Photovoltaics is the leading technology in the transition to clean energy. However, traditional silicon-based solar technology has reached its efficiency limit. Therefore, a HZB-team has developed a perovskite-based multi-junction cell architecture. For this, Kevin J. Prince and Siddhartha Garud received the Helmholtz-Zentrum Berlin's (HZB) Technology Transfer Prize of 5,000 euros.

  • Prashanth Menezes awarded prestigious VAIBHAV Fellowship by Government of India
    News
    09.10.2025
    Prashanth Menezes awarded prestigious VAIBHAV Fellowship by Government of India
    The Ministry of Science and Technology, Government of India, has announced the recipients of the Vaishvik Bhartiya Vaigyanik (VAIBHAV) Fellowship, a flagship initiative aimed at fostering collaboration between the Indian STEMM (Science, Technology, Engineering, Mathematics, and Medicine) diaspora and leading research institutions in India. Among the 2025 awardees is Dr. Prashanth W. Menezes, Head of the Department of Materials Chemistry for Catalysis at Helmholtz-Zentrum Berlin (HZB).